FIXED POINTS OF F-WEAK CONTRACTIONS ON COMPLETE METRIC SPACES

被引:176
作者
Wardowski, D. [1 ]
Van Dung, N. [2 ]
机构
[1] Univ Lodz, Fac Math & Comp Sci, Dept Nonlinear Anal, Banacha 22, PL-90238 Lodz, Poland
[2] Dong Thap Univ, Dept Math, Cao Lanh City 84, Dong Thap Prov, Vietnam
关键词
F-contraction; F-weak contraction; fixed point theorem; complete metric space;
D O I
10.2478/dema-2014-0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of an F-weak contraction and prove a fixed point theorem for F-weak contractions. Examples are given to show that our result is a proper extension of some results known in the literature.
引用
收藏
页码:146 / 155
页数:10
相关论文
共 11 条
[1]   A fixed point theorem for cyclic generalized contractions in metric spaces [J].
Alghamdi, Maryam A. ;
Petrusel, Adrian ;
Shahzad, Naseer .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[2]  
An T. V., 2012, INT J MATH MATH SCI, V2012
[3]   Common fixed points of mappings satisfying implicit contractive conditions [J].
Berinde, Vasile ;
Vetro, Francesca .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[4]  
Bianchini R., 1972, BOLL MATH ITAL, V5, P103
[5]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[6]   Coupled coincidence point theorems for generalized nonlinear contraction in partially ordered metric spaces [J].
Ding, Hui-Sheng ;
Li, Lu ;
Radenovic, Stojan .
FIXED POINT THEORY AND APPLICATIONS, 2012, :1-10
[7]   NONLINEAR CONDITIONS FOR COINCIDENCE POINT AND FIXED POINT THEOREMS [J].
Du, Wei-Shih ;
Zheng, Shao-Xuan .
TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (03) :857-868
[8]   GENERALIZATION OF A FIXED-POINT THEOREM OF REICH [J].
HARDY, GE ;
ROGERS, TD .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1973, 16 (02) :201-206
[9]   FIXED POINT RESULTS IN COMPLETE METRIC SPACES [J].
Latif, Abdul ;
Albar, Wafaa A. .
DEMONSTRATIO MATHEMATICA, 2008, 41 (01) :145-150
[10]   SOME REMARKS CONCERNING CONTRACTION MAPPINGS [J].
REICH, S .
CANADIAN MATHEMATICAL BULLETIN, 1971, 14 (01) :121-&