A NOTE ON UNIFORM SUPERCONVERGENCE FOR THE TIMOSHENKO BEAM USING MIXED FINITE-ELEMENTS

被引:3
作者
BRANDTS, JH
机构
关键词
D O I
10.1142/S0218202594000443
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we present some results on the discretization by mixed finite elements of the Timoshenko beam, i.e. the one-dimensional Reissner-Mindlin plate bending problem. The results concern superconvergence. Superconvergence (of the displacement at nodal points and of the gradient at Gaussian points) for plate bending problems was considered before, but these earlier results degenerate for small values of the plate thickness d. Here, we prove superconvergence of the mixed finite element solutions to projections of the real solutions on the approximating spaces in the global H-1(I)-norm uniform in d. These facts can be used to obtain asymptotically exact a posteriori error estimators, uniform in d, by means of an easy implementable and cheap post-processing. Numerical experiments illustrate the conclusions.
引用
收藏
页码:795 / 806
页数:12
相关论文
共 8 条
[1]   DISCRETIZATION BY FINITE-ELEMENTS OF A MODEL PARAMETER DEPENDENT PROBLEM [J].
ARNOLD, DN .
NUMERISCHE MATHEMATIK, 1981, 37 (03) :405-421
[2]   A UNIFORMLY ACCURATE FINITE-ELEMENT METHOD FOR THE REISSNER-MINDLIN PLATE [J].
ARNOLD, DN ;
FALK, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (06) :1276-1290
[3]  
BREZZI F, 1986, MATH COMPUT, V47, P151, DOI 10.1090/S0025-5718-1986-0842127-7
[4]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[5]   THE INF-SUP CONDITION AND ERROR-ESTIMATES FOR THE ARNOLD-FALK PLATE BENDING ELEMENT [J].
DURAN, R .
NUMERISCHE MATHEMATIK, 1991, 59 (08) :769-778
[6]   A FINITE-ELEMENT METHOD FOR THE MINDLIN-REISSNER PLATE MODEL [J].
DURAN, R ;
GHIOLDI, A ;
WOLANSKI, N .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (04) :1004-1014
[8]   ARCH BEAM MODELS - FINITE-ELEMENT ANALYSIS AND SUPERCONVERGENCE [J].
ZHANG, ZM .
NUMERISCHE MATHEMATIK, 1992, 61 (01) :117-143