We have found previously that arotinolol, an alpha/beta-adrenergic blocker, increases blood flow in brown adipose tissue (BAT) in a similar extent as BRL 26830A, a beta(3)-adrenoceptor agonist. We tested the hypothesis that arotinolol activates thermogenesis in BAT, leading to weight loss in monosodium-L-glutamate-induced (MSG-induced) obese mice and saline-treated controls. Six weeks of standard animal feed (CE-2) containing arotinolol hydrochloride (350 mg/kg CE-2), which reduced mean brood pressure in MSG-treated mice, significantly increased the mitochondrial protein content in BAT, and activated the specific and total binding of guanosine-5'-diphosphate (GDP) in BAT mitochondria, leading to a reduction of obesity in both MSG-and saline-treated mice vs. the control groups fed with CE-2 diet alone. However, six weeks of CE-2 diet containing propranolol hydrochloride (525 mg/kg CE-2) a non-selective beta-blocker, markedly reduced the specific and total binding of GDP in BAT mitochondria, leading to weight gain in both MSG-and saline-treated mice. These findings support the hypothesis, that arotinolol activates BAT thermogenesis, leading to weight loss.