Twenty-seven coals from Carboniferous seams in Poland were studied with the aim to find links between thermoplastic properties and chemical characteristics of the coals. Three sets of data were obtained for all the coals: (1) thermoplastic properties measured using the Gieseler plastometer: (2) yields of pyridine extractables and swelling measurements for pyridine residues; (3) ultimate, proximate, and petrographic analyses. The three data sets were evaluated using chemometric techniques with the purpose of looking for significant correlations between all the data. Temperature of softening is a linear regression of pyridine extractables and hydrogen content in coals as well as of swelling data. Temperatures of maximum fluidity and resolidification are correlated with each other and with oxygen, exinite, and moisture contents of the coals as well as with the swelling data. It has been concluded that temperature of softening is a colligative property and indicates a phase transition resulting in an increase of thermal induced mobility of coal material; the energy demand of the transition is dependent on contents of bulk components of coal system that were specified in this study. Temperatures of maximum fluidity and resolidification appear to have the same chemical background; i.e., the temperatures depend on the content of the same structural units or components. However, the means of chemical characterization of coal material used in this study were not capable of identifying them. Volatile matter and petrographic composition showed rather limited value as predictive means for some (T(F(max))) and T(R)) and no predictive value for the other thermoplastic properties.