Beyond the smiley face: applications of structural DNA nanotechnology

被引:16
作者
Arora, Aakriti Alisha [1 ]
de Silva, Chamaree [2 ]
机构
[1] Mercer Univ, Sch Med, Macon, GA 31207 USA
[2] Mercer Univ, Dept Phys, Macon, GA 31207 USA
来源
NANO REVIEWS & EXPERIMENTS | 2018年 / 9卷
关键词
DNA nanotechnology; DNA origami;
D O I
10.1080/20022727.2018.1430976
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Since the development of DNA origami by Paul Rothemund in 2006, the field of structural DNA nanotechnology has undergone tremendous growth. Through DNA origami and related approaches, self-assembly of specified DNA sequences allows for the 'bottom-up' construction of diverse nanostructures. By utilizing different sets of small 'staple' DNA strands to direct the folding of a long scaffold strand in diverse ways, DNA origami has particularly been incorporated into a variety of prototypical applications beyond the two-dimensional (2D) smiley face. In this review, the basis of DNA nanotechnology, methods of self-assembly, and Rothemund's DNA origami breakthrough are discussed first. Next, some of the most promising applications of structural DNA nanotechnology since 2006 are summarized. These include utilizing DNA origami as a tool for creating 3D nanostructures (including DNA bricks), as well as structural (ligand capsid binding, viral capsid binding, DNA NanoOctahedron, DNA mold, photonic devices, energy transfer units), and dynamic (DNA box-with-lid, DNA nano-robot, DNA barges, amphipathic DNA structures, DNA nanocircuits) applications of DNA origami.
引用
收藏
页数:7
相关论文
共 33 条
[21]   Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve In Vivo Stability [J].
Perrault, Steven D. ;
Shih, William M. .
ACS NANO, 2014, 8 (05) :5132-5140
[22]  
Pinheiro AV, 2011, NAT NANOTECHNOL, V6, P763, DOI [10.1038/nnano.2011.187, 10.1038/NNANO.2011.187]
[23]   Biotechnological mass production of DNA origami [J].
Praetorius, Florian ;
Kick, Benjamin ;
Behler, Karl L. ;
Honemann, Maximilian N. ;
Weuster-Botz, Dirk ;
Dietz, Hendrik .
NATURE, 2017, 552 (7683) :84-+
[24]   Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding [J].
Rinker, Sherri ;
Ke, Yonggang ;
Liu, Yan ;
Chhabra, Rahul ;
Yan, Hao .
NATURE NANOTECHNOLOGY, 2008, 3 (07) :418-422
[25]   Folding DNA to create nanoscale shapes and patterns [J].
Rothemund, PWK .
NATURE, 2006, 440 (7082) :297-302
[26]  
Sanderson K., 2010, NATURE, V464, P2
[27]   NUCLEIC-ACID JUNCTIONS AND LATTICES [J].
SEEMAN, NC .
JOURNAL OF THEORETICAL BIOLOGY, 1982, 99 (02) :237-247
[28]   Immobilization and One-Dimensional Arrangement of Virus Capsids with Nanoscale Precision Using DNA Origami [J].
Stephanopoulos, Nicholas ;
Liu, Minghui ;
Tong, Gary J. ;
Li, Zhe ;
Liu, Yan ;
Yan, Hao ;
Francis, Matthew B. .
NANO LETTERS, 2010, 10 (07) :2714-2720
[29]   Casting inorganic structures with DNA molds [J].
Sun, Wei ;
Boulais, Etienne ;
Hakobyan, Yera ;
Wang, Wei Li ;
Guan, Amy ;
Bathe, Mark ;
Yin, Peng .
SCIENCE, 2014, 346 (6210) :717-+
[30]   Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns [J].
Tikhomirov, Grigory ;
Petersen, Philip ;
Qian, Lulu .
NATURE, 2017, 552 (7683) :67-71