Beyond the smiley face: applications of structural DNA nanotechnology

被引:16
作者
Arora, Aakriti Alisha [1 ]
de Silva, Chamaree [2 ]
机构
[1] Mercer Univ, Sch Med, Macon, GA 31207 USA
[2] Mercer Univ, Dept Phys, Macon, GA 31207 USA
来源
NANO REVIEWS & EXPERIMENTS | 2018年 / 9卷
关键词
DNA nanotechnology; DNA origami;
D O I
10.1080/20022727.2018.1430976
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Since the development of DNA origami by Paul Rothemund in 2006, the field of structural DNA nanotechnology has undergone tremendous growth. Through DNA origami and related approaches, self-assembly of specified DNA sequences allows for the 'bottom-up' construction of diverse nanostructures. By utilizing different sets of small 'staple' DNA strands to direct the folding of a long scaffold strand in diverse ways, DNA origami has particularly been incorporated into a variety of prototypical applications beyond the two-dimensional (2D) smiley face. In this review, the basis of DNA nanotechnology, methods of self-assembly, and Rothemund's DNA origami breakthrough are discussed first. Next, some of the most promising applications of structural DNA nanotechnology since 2006 are summarized. These include utilizing DNA origami as a tool for creating 3D nanostructures (including DNA bricks), as well as structural (ligand capsid binding, viral capsid binding, DNA NanoOctahedron, DNA mold, photonic devices, energy transfer units), and dynamic (DNA box-with-lid, DNA nano-robot, DNA barges, amphipathic DNA structures, DNA nanocircuits) applications of DNA origami.
引用
收藏
页数:7
相关论文
共 33 条
  • [1] Functionalized DNA nanostructures for light harvesting and charge separation
    Albinsson, Bo
    Hannestad, Jonas K.
    Boerjesson, Karl
    [J]. COORDINATION CHEMISTRY REVIEWS, 2012, 256 (21-22) : 2399 - 2413
  • [2] Amir Y, 2014, NAT NANOTECHNOL, V9, P353, DOI [10.1038/NNANO.2014.58, 10.1038/nnano.2014.58]
  • [3] Self-assembly of a nanoscale DNA box with a controllable lid
    Andersen, Ebbe S.
    Dong, Mingdong
    Nielsen, Morten M.
    Jahn, Kasper
    Subramani, Ramesh
    Mamdouh, Wael
    Golas, Monika M.
    Sander, Bjoern
    Stark, Holger
    Oliveira, Cristiano L. P.
    Pedersen, Jan Skov
    Birkedal, Victoria
    Besenbacher, Flemming
    Gothelf, Kurt V.
    Kjems, Jorgen
    [J]. NATURE, 2009, 459 (7243) : 73 - U75
  • [4] Burns JR, 2016, NAT NANOTECHNOL, V11, P152, DOI [10.1038/NNANO.2015.279, 10.1038/nnano.2015.279]
  • [5] SYNTHESIS FROM DNA OF A MOLECULE WITH THE CONNECTIVITY OF A CUBE
    CHEN, JH
    SEEMAN, NC
    [J]. NATURE, 1991, 350 (6319) : 631 - 633
  • [6] Amphipathic DNA Origami Nanoparticles to Scaffold and Deform Lipid Membrane Vesicles
    Czogalla, Aleksander
    Kauert, Dominik J.
    Franquelim, Henri G.
    Uzunova, Veselina
    Zhang, Yixin
    Seidel, Ralf
    Schwille, Petra
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (22) : 6501 - 6505
  • [7] Switchable domain partitioning and diffusion of DNA origami rods on membranes
    Czogalla, Aleksander
    Petrov, Eugene P.
    Kauert, Dominik J.
    Uzunova, Veselina
    Zhang, Yixin
    Seidel, Ralf
    Schwille, Petra
    [J]. FARADAY DISCUSSIONS, 2013, 161 : 31 - 43
  • [8] A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads
    Douglas, Shawn M.
    Bachelet, Ido
    Church, George M.
    [J]. SCIENCE, 2012, 335 (6070) : 831 - 834
  • [9] Self-assembly of DNA into nanoscale three-dimensional shapes
    Douglas, Shawn M.
    Dietz, Hendrik
    Liedl, Tim
    Hoegberg, Bjoern
    Graf, Franziska
    Shih, William M.
    [J]. NATURE, 2009, 459 (7245) : 414 - 418
  • [10] Education N.I.S., 2008, DNA NAN, P1