Beyond the smiley face: applications of structural DNA nanotechnology

被引:16
作者
Arora, Aakriti Alisha [1 ]
de Silva, Chamaree [2 ]
机构
[1] Mercer Univ, Sch Med, Macon, GA 31207 USA
[2] Mercer Univ, Dept Phys, Macon, GA 31207 USA
来源
NANO REVIEWS & EXPERIMENTS | 2018年 / 9卷
关键词
DNA nanotechnology; DNA origami;
D O I
10.1080/20022727.2018.1430976
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Since the development of DNA origami by Paul Rothemund in 2006, the field of structural DNA nanotechnology has undergone tremendous growth. Through DNA origami and related approaches, self-assembly of specified DNA sequences allows for the 'bottom-up' construction of diverse nanostructures. By utilizing different sets of small 'staple' DNA strands to direct the folding of a long scaffold strand in diverse ways, DNA origami has particularly been incorporated into a variety of prototypical applications beyond the two-dimensional (2D) smiley face. In this review, the basis of DNA nanotechnology, methods of self-assembly, and Rothemund's DNA origami breakthrough are discussed first. Next, some of the most promising applications of structural DNA nanotechnology since 2006 are summarized. These include utilizing DNA origami as a tool for creating 3D nanostructures (including DNA bricks), as well as structural (ligand capsid binding, viral capsid binding, DNA NanoOctahedron, DNA mold, photonic devices, energy transfer units), and dynamic (DNA box-with-lid, DNA nano-robot, DNA barges, amphipathic DNA structures, DNA nanocircuits) applications of DNA origami.
引用
收藏
页数:7
相关论文
共 33 条
[1]   Functionalized DNA nanostructures for light harvesting and charge separation [J].
Albinsson, Bo ;
Hannestad, Jonas K. ;
Boerjesson, Karl .
COORDINATION CHEMISTRY REVIEWS, 2012, 256 (21-22) :2399-2413
[2]  
Amir Y, 2014, NAT NANOTECHNOL, V9, P353, DOI [10.1038/NNANO.2014.58, 10.1038/nnano.2014.58]
[3]   Self-assembly of a nanoscale DNA box with a controllable lid [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Subramani, Ramesh ;
Mamdouh, Wael ;
Golas, Monika M. ;
Sander, Bjoern ;
Stark, Holger ;
Oliveira, Cristiano L. P. ;
Pedersen, Jan Skov ;
Birkedal, Victoria ;
Besenbacher, Flemming ;
Gothelf, Kurt V. ;
Kjems, Jorgen .
NATURE, 2009, 459 (7243) :73-U75
[4]  
Burns JR, 2016, NAT NANOTECHNOL, V11, P152, DOI [10.1038/NNANO.2015.279, 10.1038/nnano.2015.279]
[5]   SYNTHESIS FROM DNA OF A MOLECULE WITH THE CONNECTIVITY OF A CUBE [J].
CHEN, JH ;
SEEMAN, NC .
NATURE, 1991, 350 (6319) :631-633
[6]   Amphipathic DNA Origami Nanoparticles to Scaffold and Deform Lipid Membrane Vesicles [J].
Czogalla, Aleksander ;
Kauert, Dominik J. ;
Franquelim, Henri G. ;
Uzunova, Veselina ;
Zhang, Yixin ;
Seidel, Ralf ;
Schwille, Petra .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (22) :6501-6505
[7]   Switchable domain partitioning and diffusion of DNA origami rods on membranes [J].
Czogalla, Aleksander ;
Petrov, Eugene P. ;
Kauert, Dominik J. ;
Uzunova, Veselina ;
Zhang, Yixin ;
Seidel, Ralf ;
Schwille, Petra .
FARADAY DISCUSSIONS, 2013, 161 :31-43
[8]   A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads [J].
Douglas, Shawn M. ;
Bachelet, Ido ;
Church, George M. .
SCIENCE, 2012, 335 (6070) :831-834
[9]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[10]  
Education N.I.S., 2008, DNA NAN, P1