A GREEDY HEURISTIC FOR A MINIMUM-WEIGHT FOREST PROBLEM

被引:23
作者
IMIELINSKA, C [1 ]
KALANTARI, B [1 ]
KHACHIYAN, L [1 ]
机构
[1] RUTGERS UNIV,DEPT COMP SCI,NEW BRUNSWICK,NJ 08903
基金
美国国家科学基金会;
关键词
APPROXIMATE ALGORITHMS; COMBINATORIAL PROBLEMS;
D O I
10.1016/0167-6377(93)90097-Z
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Given an undirected edge-weighted graph and a natural number m, we consider the problem of finding a minimum-weight spanning forest such that each of its trees spans at least m vertices. For m greater-than-or-equal-to 4, the problem is shown to be NP-hard. We describe a simple 2-approximate greedy heuristic that runs within the time needed to compute a minimum spanning tree. If the edge weights satisfy the triangle inequality, any such a 2-approximate solution, in linear time, can be converted into a 4-approximate solution for the problem of covering the graph with minimum-weight vertex disjoint cycles of size at least m.
引用
收藏
页码:65 / 71
页数:7
相关论文
共 11 条
[1]   MATCHING PROBLEM WITH SIDE CONDITIONS [J].
CORNUEJOLS, G ;
PULLEYBLANK, W .
DISCRETE MATHEMATICS, 1980, 29 (02) :135-159
[2]   PATHS TREES AND FLOWERS [J].
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :449-&
[3]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[4]  
GOEMANS MX, 1992, 3RD P ANN ACM SIAM S, P307
[5]   A NEW CLASS OF HEURISTIC ALGORITHMS FOR WEIGHTED PERFECT MATCHING [J].
GRIGORIADIS, MD ;
KALANTARI, B .
JOURNAL OF THE ACM, 1988, 35 (04) :769-776
[6]  
IMIELINSKA C, 1991, IN PRESS BIT
[7]  
IMIELINSKA C, UNPUB HEURISTICS GEN
[8]  
IMIELINSKA C, 1992, DIMACS9232 RUTG U TE
[9]  
Papadimitriou C. H., 1998, COMBINATORIAL OPTIMI
[10]   HEURISTIC MATCHING FOR GRAPHS SATISFYING THE TRIANGLE INEQUALITY [J].
PLAISTED, DA .
JOURNAL OF ALGORITHMS, 1984, 5 (02) :163-179