Boron removal from metallurgical grade silicon and Si-Sn alloy through slag refining with gas blowing

被引:1
作者
Al-Khazraji, Rowaid [1 ,2 ]
Li, Yaqiong [1 ,2 ]
Zhang, Lifeng [1 ,2 ]
机构
[1] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Beijing Key Lab Green Recycling & Extract Met, Beijing 100083, Peoples R China
来源
FUNCTIONAL MATERIALS | 2018年 / 25卷 / 03期
基金
美国国家科学基金会;
关键词
B removal; metallurgical grade silicon; Si-Sn alloy; slag refining; gas blowing;
D O I
10.15407/fm25.03.625
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A combined method of slag refining and gas blowing technique were used for boron removal from metallurgical grade silicon and 75%wt Si-Sn alloy using the 45% CaO-45%SiO2-10% CaCl2 slag with the use of Ar gas and Ar-20% O-2 mixed gas. Increasing gas flow rate from 50 to 250 ml/min shows enhancement in B removal. At fixed conditions the Ar-20% O-2 mixed gas blowing shows a good removal efficiency of boron about 85% and 96% to MG and Si-Sn alloy respectively, compared with the single Ar gas blowing with 78.6% and 88% to MG and Si-Sn alloy respectively. Changes in slag composition representing by decreasing in all compounds especially CaCl2 attached with increase in Al2O3. The B impurities after the treatment found with low intensity in Si matrix but with high intensity in slag phase and Sn phase. Boron removal controlled by mass transfer in slag phase with mass transfer coefficients of 3.38.10(-4)cm.s(-1) and 7.2.10(-5) cm.s(-1) in Si and Si-Sn alloy respectively.
引用
收藏
页码:625 / 631
页数:7
相关论文
共 21 条
[1]   Directional solidification of polycrystalline silicon ingots by successive relaxation of supercooling method [J].
Arafune, Koji ;
Ohishi, Eichiro ;
Sai, Hitoshi ;
Ohshita, Yoshio ;
Yamaguchi, Masafumi .
JOURNAL OF CRYSTAL GROWTH, 2007, 308 (01) :5-9
[2]   Photovoltaic materials, past, present, future [J].
Goetzberger, A ;
Hebling, C .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2000, 62 (1-2) :1-19
[3]   IMPURITY EFFECTS IN SILICON FOR HIGH-EFFICIENCY SOLAR-CELLS [J].
HOPKINS, RH ;
ROHATGI, A .
JOURNAL OF CRYSTAL GROWTH, 1986, 75 (01) :67-79
[4]   Metal content of multicrystalline silicon for solar cells and its impact on minority carrier diffusion length [J].
Istratov, AA ;
Buonassisi, T ;
McDonald, RJ ;
Smith, AR ;
Schindler, R ;
Rand, JA ;
Kalejs, JP ;
Weber, ER .
JOURNAL OF APPLIED PHYSICS, 2003, 94 (10) :6552-6559
[5]   Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications [J].
Johnston, M. D. ;
Barati, M. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2010, 94 (12) :2085-2090
[6]   Special materials in pyrotechnics:: VI. silicon -: An old fuel with new perspectives [J].
Koch, Ernst-Christian ;
Clement, Dominik .
PROPELLANTS EXPLOSIVES PYROTECHNICS, 2007, 32 (03) :205-212
[7]   Hydrometallurgical Purification of Metallurgical Grade Silicon with Hydrogen Peroxide in Hydrofluoric Acid [J].
Lai, Huixian ;
Huang, Liuqing ;
Xiong, Huaping ;
Gan, Chuanhai ;
Xing, Pengfei ;
Li, Jintang ;
Luo, Xuetao .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (01) :311-318
[8]   Purification of metallurgical-grade silicon using zirconium as an impurity getter [J].
Lei, Yun ;
Ma, Wenhui ;
Lv, Guoqiang ;
Wei, Kuixian ;
Li, Shaoyuan ;
Morita, Kazuki .
SEPARATION AND PURIFICATION TECHNOLOGY, 2017, 173 :364-371
[9]   Winning the Global Race for Solar Silicon [J].
Lynch, David .
JOM, 2009, 61 (11) :41-48
[10]   Multicrystalline silicon for solar cells [J].
Möller, HJ ;
Funke, C ;
Rinio, M ;
Scholz, S .
THIN SOLID FILMS, 2005, 487 (1-2) :179-187