STRONG UNICITY AND ALTERNATION FOR LINEAR OPTIMIZATION

被引:7
作者
FISCHER, T
机构
[1] Fachbereich Mathematik, Johann Wolfgang Goethe-Universität, Frankfurt
关键词
LINEAR SEMI-INFINITE OPTIMIZATION; PARAMETRIC PROGRAMMING; STRONG UNICITY; ALTERNATION; HAAR THEOREM;
D O I
10.1007/BF00940642
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider linear semi-infinite optimization problems and prove characterizations for strong unicity. One of these is a weak alternation property. This result suggests the introduction of the property of regular strong unicity, which is equivalent to a stronger alternation property. The theorems are used in order to prove a Haar-type theorem for linear optimization problems. An application to best Chebyshev approximation is given.
引用
收藏
页码:251 / 267
页数:17
相关论文
共 20 条
[1]  
Bartelt M. W., 1973, Journal of Approximation Theory, V9, P255, DOI 10.1016/0021-9045(73)90091-9
[3]  
BROSOWSKI B, 1983, CONSTRUCTIVE FUNCTIO, P241
[4]   DUALITY IN SEMI-INFINITE PROGRAMS AND SOME WORKS OF HAAR AND CARATHEODORY [J].
CHARNES, A ;
COOPER, WW ;
KORTANEK, K .
MANAGEMENT SCIENCE, 1963, 9 (02) :209-228
[5]  
CHERNIKOV SN, 1963, USPEHI MATEMATICESKI, V18, P199
[6]  
CHERNIKOV SN, 1971, LINEARE UNGLEICHUNGE, P228
[7]  
COLLATZ L, 1965, APPROXIMATION FUNCTI, P43
[8]   AN INFINITE LINEAR PROGRAM WITH A DUALITY GAP [J].
DUFFIN, RJ ;
KARLOVITZ, LA .
MANAGEMENT SCIENCE, 1965, 12 (01) :122-134
[9]   FARKAS-MINKOWSKI SYSTEMS IN SEMI-INFINITE PROGRAMMING [J].
GOBERNA, MA ;
LOPEZ, MA ;
PASTOR, J .
APPLIED MATHEMATICS AND OPTIMIZATION, 1981, 7 (04) :295-308
[10]  
Haar A., 1924, ACTA MATH SZEGED, V2, P1