UNIQUENESS OF LIMIT-CYCLES IN A PREDATOR-PREY MODEL SIMULATING AN IMMUNE-RESPONSE

被引:2
|
作者
HUANG, XC
机构
[1] Department of Mathematics, New Jersey Institute of Technology, Newark, NJ
关键词
D O I
10.1080/00207729108910634
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a predator-prey model simulating an immune response which is different from Bell's model (Bell 1973). We consider this model as a special case of a general model of Kolmogorov type and discuss the existence and uniqueness of limit cycles in the model.
引用
收藏
页码:579 / 585
页数:7
相关论文
共 50 条
  • [41] A PREDATOR-PREY SYSTEM INVOLVING FIVE LIMIT CYCLES
    Saez, Eduardo
    Stange, Eduardo
    Szanto, Ivan
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2014, 44 (06) : 2057 - 2073
  • [42] Limit cycles in a Gause-type predator-prey model with sigmoid functional response and weak Allee effect on prey
    Gonzalez-Olivares, Eduardo
    Rojas-Palma, Alejandro
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (08) : 963 - 975
  • [43] Consequences of double Allee effect on the number of limit cycles in a predator-prey model
    Gonzalez-Olivares, Eduardo
    Gonzalez-Yanez, Betsabe
    Mena Lorca, Jaime
    Rojas-Palma, Alejandro
    Flores, Jose D.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (09) : 3449 - 3463
  • [44] Nonexistence of limit cycles in two classes of predator-prey systems
    Aghajani, A.
    Moradifam, A.
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (01) : 356 - 365
  • [45] Several Bifurcation Mechanisms for Limit Cycles in a Predator-Prey System
    Zegeling, Andre
    Kooij, Robert E.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2021, 20 (03)
  • [46] One and three limit cycles in a cubic predator-prey system
    Huang, Xuncheng
    Wang, Yuanming
    Zhu, Lemin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (05) : 501 - 511
  • [47] Uniqueness and stability of positive solutions to a predator-prey model
    Zhang Y.
    Chen W.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2010, 40 (04): : 882 - 884
  • [48] Multiple Limit Cycles in a Gause Type Predator-Prey Model with Holling Type III Functional Response and Allee Effect on Prey
    Gonzalez-Olivares, Eduardo
    Rojas-Palma, Alejandro
    BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (06) : 1378 - 1397
  • [49] Uniqueness and stability of a predator-prey model with C-M functional response
    Li, Shanbing
    Wu, Jianhua
    Dong, Yaying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 69 (10) : 1080 - 1095
  • [50] Uniqueness of the limit cycle for cause-type predator-prey systems
    Hwang, TW
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 238 (01) : 179 - 195