Finite Volume Element Approximation for the Elliptic Equation with Distributed Control

被引:2
|
作者
Wang, Quanxiang [1 ]
Zhao, Tengjin [2 ]
Zhang, Zhiyue [2 ]
机构
[1] Nanjing Agr Univ, Coll Engn, Nanjing 210031, Jiangsu, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1155/2018/4753792
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a priori error estimates for the finite volume element schemes of optimal control problems, which are governed by linear elliptic partial differential equation. The variational discretization approach is used to deal with the control. The error estimation shows that the combination of variational discretization and finite volume element formulation allows optimal convergence. Numerical results are provided to support our theoretical analysis.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] On finite element approximation of variational inequalities arising from elliptic control problems
    Wirsching, HJ
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1998, 19 (7-8) : 917 - 932
  • [22] Finite element method for a nonsmooth elliptic equation
    Lili Chang
    Wei Gong
    Ningning Yan
    Frontiers of Mathematics in China, 2010, 5 : 191 - 209
  • [23] Finite element method for a nonsmooth elliptic equation
    Chang, Lili
    Gong, Wei
    Yan, Ningning
    FRONTIERS OF MATHEMATICS IN CHINA, 2010, 5 (02) : 191 - 209
  • [24] Robust Finite Element Discretization and Solvers for Distributed Elliptic Optimal Control Problems
    Langer, Ulrich
    Loescher, Richard
    Steinbach, Olaf
    Yang, Huidong
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2023, 23 (04) : 989 - 1005
  • [25] Robust finite element discretization and solvers for distributed elliptic optimal control problems
    Langer, Ulrich
    Löscher, Richard
    Steinbach, Olaf
    Yang, Huidong
    arXiv, 2022,
  • [26] On the finite element approximation of elliptic QVIs with noncoercive operators
    Boulbrachene, Messaoud
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (16) : 5305 - 5316
  • [27] Finite element approximation on elliptic singular optimal design
    Chenais, D
    Zuazua, E
    COMPTES RENDUS MATHEMATIQUE, 2004, 338 (09) : 729 - 734
  • [28] Finite element approximation for some quasilinear elliptic problems
    Matsuzawa, Y
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 96 (01) : 13 - 25
  • [29] A finite element approximation for a class of degenerate elliptic equations
    Franchi, B
    Tesi, MC
    MATHEMATICS OF COMPUTATION, 2000, 69 (229) : 41 - 63
  • [30] A Priori Error Analysis for the Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems
    May, S.
    Rannacher, R.
    Vexler, B.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 637 - +