GEOMETRIC-PROPERTIES OF SOME FAMILIAR DIFFUSIONS IN RN

被引:15
作者
BORELL, C
机构
关键词
CONCAVE; TRANSITION PROBABILITY DENSITY OF KILLED BROWNIAN MOTION; BRUNN-MINKOWSKI INEQUALITY;
D O I
10.1214/aop/1176989412
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider a convex domain B in R(n) and denote by p(t, x, y) the transition probability density of Brownian motion in B killed at the boundary of B. The main result in this paper, in particular, shows that the function s ln s(n)p(s2, x, y), (s, x, y) is-an-element-of R+ x B2, is concave.
引用
收藏
页码:482 / 489
页数:8
相关论文
共 5 条
[1]   GREENIAN POTENTIALS AND CONCAVITY [J].
BORELL, C .
MATHEMATISCHE ANNALEN, 1985, 272 (01) :155-160
[2]  
BORELL C, 1984, ANN SCI ECOLE NORM S, V17, P451
[3]  
BORELL C, 1974, PREPRINT SERIES AARH, V16
[4]  
Borell C., 1975, PERIOD MATH HUNG, V6, P111, DOI DOI 10.1007/BF02018814
[5]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389