A Two Dimensional Discrete Mollification Operator and the Numerical Solution of an Inverse Source Problem

被引:4
作者
Echeverry, Manuel D. [1 ]
Mejia, Carlos E. [1 ]
机构
[1] Univ Nacl Colombia, Escuela Matemat, Carrera 65 59 A-110, Medellin 050034, Colombia
关键词
inverse problem; mollification; fractional derivatives;
D O I
10.3390/axioms7040089
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a two-dimensional time fractional diffusion equation and address the important inverse problem consisting of the identification of an ingredient in the source term. The fractional derivative is in the sense of Caputo. The necessary regularization procedure is provided by a two-dimensional discrete mollification operator. Convergence results and illustrative numerical examples are included.
引用
收藏
页数:11
相关论文
共 24 条
[1]   Stabilization of explicit methods for convection diffusion equations by discrete mollification [J].
Acosta, Carlos D. ;
Mejia, Carlos E. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (03) :368-380
[2]   Difference schemes stabilized by discrete mollification for degenerate parabolic equations in two space dimensions [J].
Acosta, Carlos D. ;
Buerger, Raimund .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2012, 32 (04) :1509-1540
[3]   Mollification formulas and implicit smoothing [J].
Beatson, R. K. ;
Bui, H.-Q. .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2007, 27 (02) :125-149
[4]   Application of Fractional Differential Equations for Modeling the Anomalous Diffusion of Contaminant from Fracture into Porous Rock Matrix with Bordering Alteration Zone [J].
Fomin, Sergei ;
Chugunov, Vladimir ;
Hashida, Toshiyuki .
TRANSPORT IN POROUS MEDIA, 2010, 81 (02) :187-205
[5]   Estimation of unknown boundary functionsin an inverse heat conduction problem using a mollified marching scheme [J].
Garshasbi, M. ;
Dastour, H. .
NUMERICAL ALGORITHMS, 2015, 68 (04) :769-790
[6]   Regularization techniques for nonlinear problems [J].
Hinestroza, D ;
Murio, DA ;
Zhan, S .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1999, 37 (10) :145-159
[7]   Regularized solution of an inverse source problem for a time fractional diffusion equation [J].
Huy Tuan Nguyen ;
Dinh Long Le ;
Van Thinh Nguyen .
APPLIED MATHEMATICAL MODELLING, 2016, 40 (19-20) :8244-8264
[8]   Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations [J].
Jiang, Daijun ;
Li, Zhiyuan ;
Liu, Yikan ;
Yamamoto, Masahiro .
INVERSE PROBLEMS, 2017, 33 (05)
[9]   Generalized Tikhonov methods for an inverse source problem of the time-fractional diffusion equation [J].
Ma, Yong-Ki ;
Prakash, P. ;
Deiveegan, A. .
CHAOS SOLITONS & FRACTALS, 2018, 108 :39-48
[10]  
Mejia C. E., 2014, STABLE COMPUTATIONS