ON CYCLE LENGTHS IN GRAPHS OF MODERATE DEGREE

被引:0
|
作者
AITDJAFER, HB
机构
关键词
D O I
10.1016/0012-365X(94)90143-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that for all positive epsilon, an integer N(epsilon) exists such that if G is any graph of order n greater than or equal to N(epsilon) with minimum degree delta greater than or equal to 32 root n then G contains a cycle of length 21 for each integer I, 2 less than or equal to 1 less than or equal to delta/(16+epsilon).
引用
收藏
页码:55 / 62
页数:8
相关论文
共 50 条
  • [1] Cycle lengths and minimum degree of graphs
    Liu, Chun-Hung
    Ma, Jie
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 128 : 66 - 95
  • [2] Degree sums for edges and cycle lengths in graphs
    Brandt, S
    Veldman, HJ
    JOURNAL OF GRAPH THEORY, 1997, 25 (04) : 253 - 256
  • [3] Cycle lengths in graphs with large minimum degree
    Nikiforov, V
    Schelp, RH
    JOURNAL OF GRAPH THEORY, 2006, 52 (02) : 157 - 170
  • [4] The number of cycle lengths in graphs of given minimum degree and girth
    Erdos, P
    Faudree, RJ
    Rousseau, CC
    Schelp, RH
    DISCRETE MATHEMATICS, 1999, 200 (1-3) : 55 - 60
  • [5] Cycle Lengths in Hamiltonian Graphs with a Pair of Vertices Having Large Degree Sum
    Michael Ferrara
    Michael S. Jacobson
    Angela Harris
    Graphs and Combinatorics, 2010, 26 : 215 - 223
  • [6] Cycle Lengths in Hamiltonian Graphs with a Pair of Vertices Having Large Degree Sum
    Ferrara, Michael
    Jacobson, Michael S.
    Harris, Angela
    GRAPHS AND COMBINATORICS, 2010, 26 (02) : 215 - 223
  • [7] ON THE DISTRIBUTION OF CYCLE LENGTHS IN GRAPHS
    GYARFAS, A
    KOMLOS, J
    SZEMEREDI, E
    JOURNAL OF GRAPH THEORY, 1984, 8 (04) : 441 - 462
  • [8] Cycle lengths in planar graphs
    Verstraëte, J
    UTILITAS MATHEMATICA, 2006, 69 : 109 - 117
  • [9] A note on cycle lengths in graphs
    Gould, RJ
    Haxell, PE
    Scott, AD
    GRAPHS AND COMBINATORICS, 2002, 18 (03) : 491 - 498
  • [10] Distribution of cycle lengths in graphs
    Fan, GH
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2002, 84 (02) : 187 - 202