On the boundedness of pseudo-differential operators associated with the Dunkl transform on the real line

被引:3
作者
Amri, Bechir [1 ]
Mustapha, Sami [2 ]
Sifi, Mohamed [3 ]
机构
[1] Univ Tunis, IPEIT, Dept Math, Montfleury Tunis 1089, Tunisia
[2] Univ Paris VI, Inst Math Jussieu, F-75013 Paris, France
[3] Univ Tunis El Manar, Fac Sci Tunis, Dept Math, Tunis 2092, Tunisia
关键词
Dunkl transform; pseudo-differential operators; singular integrals;
D O I
10.1515/APAM.2010.028
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider pseudo-differential operators associated with the Dunkl transform on the real line. We establish the Calderon-Vaillancourt theorem for such operators. We also obtain the L-p-boundedness for the Hormander's class S-1,delta(0) (0 <= delta < 1).
引用
收藏
页码:89 / 107
页数:19
相关论文
共 13 条
  • [1] Abdelkefi C., Amri B., Sifi M., Pseudo-differential operator associated with the Dunkl operator, Differ. Integral Equ., 20, pp. 1035-1051, (2007)
  • [2] Calderon A.P., Vaillancourt R., A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U. S. A., 69, pp. 1185-1187, (1972)
  • [3] Coifman R.R., Meyer Y., Au-delà des opérateurs pseudo-différentiels, Astérisque, 57, pp. 1-185, (1978)
  • [4] De Jeu M.F.E., The Dunkl transform, Invent. Math., 113, pp. 147-162, (1993)
  • [5] Dunkl C.F., Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc., 311, pp. 167-183, (1989)
  • [6] Dunkl C.F., Hankel transforms associated to finite reflection groups, Contemp. Math., 138, pp. 123-138, (1992)
  • [7] Hormander L., On the L<sup>2</sup> continuity of pseudo-differential operators, Commun. Pure Appl. Math., 24, pp. 529-535, (1971)
  • [8] Hwang I.L., The L<sup>2</sup>-Boundedness of pseudodifferential operators, Trans. Amer. Math. Soc., 302, pp. 55-76, (1987)
  • [9] Kato T., Boundedness of some pseudo-differential operators, Osaka J. Math., 13, pp. 1-9, (1976)
  • [10] Kumano-Go H., Nagase M., L<sup>p</sup>-theory of pseudo-differential operators, Proc. Jap. Acad., 46, pp. 138-142, (1970)