AN INVARIANT MANIFOLD APPROACH TO NONLINEAR NORMAL-MODES OF OSCILLATION

被引:34
|
作者
SHAW, SW [1 ]
机构
[1] UNIV MICHIGAN,DEPT MECH ENGN & APPL MECH,ANN ARBOR,MI 48109
关键词
NONLINEAR VIBRATIONS; NONLINEAR OSCILLATIONS; INVARIANT MANIFOLDS; NORMAL MODES; GALERKIN;
D O I
10.1007/BF02430640
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for determining the amplitude-dependent mode shapes and the corresponding modal dynamics of weakly nonlinear vibratory systems is described. The method is a combination of a Galerkin projection and invariant manifold techniques and is applied to a class of distributed parameter vibratory systems. In this paper the general theory for a class of conservative systems is outlined and applied to determine the nonlinear mode shapes and modal dynamics of a linear Euler-Bernoulli team attached to a nonlinear elastic foundation.
引用
收藏
页码:419 / 448
页数:30
相关论文
共 50 条
  • [31] Nonlinear forced vibration analysis of doubly curved shells via the parameterization method for invariant manifold
    Pinho, Flavio Augusto Xavier Carneiro
    Amabili, Marco
    Del Prado, Zenon Jose Guzman Nunez
    da Silva, Frederico Martins Alves
    NONLINEAR DYNAMICS, 2024, 112 (23) : 20677 - 20701
  • [32] Center stable manifold for ground states of nonlinear Schrödinger equations with internal modes
    Maeda, Masaya
    Yamazaki, Yohei
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 387 : 256 - 298
  • [33] On the numerical computation of nonlinear normal modes for reduced-order modelling of conservative vibratory systems
    Blanc, F.
    Touze, C.
    Mercier, J. -F.
    Ege, K.
    Ben-Dhia, A. -S. Bonnet
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2013, 36 (02) : 520 - 539
  • [34] Influence of lumped parameters elements on the normal oscillation modes of finite continuous medium systems
    Gomez, B. J.
    Repetto, C. E.
    Stia, C. R.
    Welti, R.
    REVISTA BRASILEIRA DE ENSINO DE FISICA, 2008, 30 (03):
  • [35] Bifurcation of nonlinear normal modes of a cantilever beam under harmonic excitation
    Lokanna Hoskoti
    Ajay Misra
    Mahesh M. Sucheendran
    Archive of Applied Mechanics, 2020, 90 : 1247 - 1266
  • [36] Bifurcation of nonlinear normal modes of a cantilever beam under harmonic excitation
    Hoskoti, Lokanna
    Misra, Ajay
    Sucheendran, Mahesh M.
    ARCHIVE OF APPLIED MECHANICS, 2020, 90 (06) : 1247 - 1266
  • [37] A plain approach for center manifold reduction of nonlinear systems with external periodic excitations
    Waswa, Peter M. B.
    Redkar, Sangram
    Subramanian, Susheelkumar C.
    JOURNAL OF VIBRATION AND CONTROL, 2020, 26 (11-12) : 929 - 940
  • [38] Effect of thermoelastic damping on nonlinear vibrations of a microbeam under electrostatic actuation using nonlinear normal modes
    Farvandi, Ahad
    Karami Mohammadi, Ardeshir
    JOURNAL OF VIBRATION AND CONTROL, 2024, 30 (23-24) : 5309 - 5320
  • [39] Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction
    Haller, George
    Ponsioen, Sten
    NONLINEAR DYNAMICS, 2016, 86 (03) : 1493 - 1534
  • [40] Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction
    George Haller
    Sten Ponsioen
    Nonlinear Dynamics, 2016, 86 : 1493 - 1534