AN INVARIANT MANIFOLD APPROACH TO NONLINEAR NORMAL-MODES OF OSCILLATION

被引:36
作者
SHAW, SW [1 ]
机构
[1] UNIV MICHIGAN,DEPT MECH ENGN & APPL MECH,ANN ARBOR,MI 48109
关键词
NONLINEAR VIBRATIONS; NONLINEAR OSCILLATIONS; INVARIANT MANIFOLDS; NORMAL MODES; GALERKIN;
D O I
10.1007/BF02430640
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A method for determining the amplitude-dependent mode shapes and the corresponding modal dynamics of weakly nonlinear vibratory systems is described. The method is a combination of a Galerkin projection and invariant manifold techniques and is applied to a class of distributed parameter vibratory systems. In this paper the general theory for a class of conservative systems is outlined and applied to determine the nonlinear mode shapes and modal dynamics of a linear Euler-Bernoulli team attached to a nonlinear elastic foundation.
引用
收藏
页码:419 / 448
页数:30
相关论文
共 32 条
[11]  
Lamb H., 1932, HYDRODYNAMICS
[12]   NONLINEAR GALERKIN METHODS [J].
MARION, M ;
TEMAM, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1139-1157
[13]   AN APPLICATION OF THE POINCARE MAP TO THE STABILITY OF NON-LINEAR NORMAL-MODES [J].
MONTH, LA ;
RAND, RH .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1980, 47 (03) :645-651
[14]   PERIODIC ORBITS NEAR AN EQUILIBRIUM AND A THEOREM BY WEINSTEIN,A [J].
MOSER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1976, 29 (06) :727-747
[15]  
MOSER J, 1976, COMMUN PURE APPL MAT, V31, P529
[16]  
NAYFEH AH, 1994, PREPRINT DEPARTMENT
[17]  
NAYFEH AH, 1992, NONLIN DYN, V2, P145
[18]  
NAYFEH AH, 1994, IN PRESS ASME J VIB
[19]  
Rand R. H., 1974, International Journal of Non-Linear Mechanics, V9, P363, DOI 10.1016/0020-7462(74)90021-3
[20]  
Rand R.H., 1992, ACTA MECH, V3, P129