QUASIVARIETIES OF DISTRIBUTIVE LATTICES WITH A QUANTIFIER

被引:3
作者
ADAMS, ME
DZIOBIAK, W
机构
[1] SUNY COLL NEW PALTZ,DEPT MATH,NEW PALTZ,NY 12561
[2] NICHOLAS COPERNICUS UNIV,INST MATH,PL-87100 TORUN,POLAND
关键词
D O I
10.1016/0012-365X(93)E0107-F
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that any subvariety V of the variety of bounded distributive lattices with a quantifier, as considered by Cignoli (1991), contains either uncountably or finitely many quasivarieties depending on whether V contains the 4-element bounded Boolean lattice with a simple quantifier. It is also shown that, in the former case, the quasivarieties contained in V form a lattice which fails to satisfy every nontrivial lattice identity while, in the latter case, they form a chain of length less than or equal to 3.
引用
收藏
页码:15 / 28
页数:14
相关论文
共 11 条
[1]   Q-UNIVERSAL QUASIVARIETIES OF ALGEBRAS [J].
ADAMS, ME ;
DZIOBIAK, W .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (04) :1053-1059
[2]   QUANTIFIERS ON DISTRIBUTIVE LATTICES [J].
CIGNOLI, R .
DISCRETE MATHEMATICS, 1991, 96 (03) :183-197
[3]  
Davey B.A., 1992, INTRO LATTICES ORDER
[4]  
GRATZER G, 1980, ACTA SCI MATH, V42, P257
[5]  
Halmos, 1956, COMPOS MATH, V12, P217
[6]  
Hedrlin Z., 1971, ALGEBR UNIV, V1, P97
[7]   EQUATIONAL CLASSES OF DISTRIBUTIVE PSEUDO-COMPLEMENTED LATTICES [J].
LEE, KB .
CANADIAN JOURNAL OF MATHEMATICS, 1970, 22 (04) :881-&
[8]   EQUATIONAL CLASSES OF ALGEBRAIC VERSIONS OF LOGIC I [J].
MONK, D .
MATHEMATICA SCANDINAVICA, 1970, 27 (01) :53-&
[9]  
PRIESTLEY HA, IN PRESS NATURAL DUA
[10]  
PRIESTLEY HA, 1970, B LOND MATH SOC, V2, P186, DOI DOI 10.1112/BLMS/2.2.186