REMARKS OF EXPONENTIALLY HARMONIC MAPS

被引:0
作者
Chiang, Yuan-Jen [1 ]
机构
[1] Univ Mary Washington, Dept Math, Fredericksburg, VA 22401 USA
来源
REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES | 2018年 / 63卷 / 03期
关键词
exponential energy; exponentially harmonic map; monotonicity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M, g(0)) be a complete Riemannian manifold with a pole x(0) and (N, h) be a Riemannian manifold. We show that if f : (M, eta(2) g(0)) -> (N, h) is an exponentially harmonic map such that eta (a smooth function on M) satisfies some condition (*), then certain monotonicity formula is derived. We study the monotonicity of exponentially harmonic maps under a few different circumstances and discuss their vanishing.
引用
收藏
页码:237 / 248
页数:12
相关论文
共 50 条
  • [31] Two Remarks on Generalized Entropy Power Inequalities
    Madiman, Mokshay
    Nayar, Piotr
    Tkocz, Tomasz
    GEOMETRIC ASPECTS OF FUNCTIONAL ANALYSIS: ISRAEL SEMINAR (GAFA) 2017-2019, VOL II, 2020, 2266 : 169 - 185
  • [32] Transversality in the setting of hyperbolic and parabolic maps
    Levin, Genadi
    Shen, Weixiao
    van Strien, Sebastian
    JOURNAL D ANALYSE MATHEMATIQUE, 2020, 141 (01): : 247 - 284
  • [33] Discontinuity of topological entropy for Lozi maps
    Yildiz, Izzet Burak
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2012, 32 : 1783 - 1800
  • [34] Some remarks on the Walras equilibrium problem in Lebesgue spaces
    A. Causa
    F. Raciti
    Optimization Letters, 2011, 5 : 99 - 112
  • [35] Remarks on the Monge-Kantorovich problem in the discrete setting
    Brezis, Haim
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (02) : 207 - 213
  • [36] Some remarks on absolute continuity and quantization of probability measures
    Zhu, Sanguo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 330 (02) : 1465 - 1477
  • [37] Some remarks on the Walras equilibrium problem in Lebesgue spaces
    Causa, A.
    Raciti, F.
    OPTIMIZATION LETTERS, 2011, 5 (01) : 99 - 112
  • [38] Remarks on q-Monotone Functions and the Bernstein polynomials
    Ulrich Abel
    Dany Leviatan
    Ioan Raşa
    Results in Mathematics, 2023, 78
  • [39] A HARMONIC MEAN INEQUALITY FOR THE POLYGAMMA FUNCTION
    Das, Sourav
    Swaminathan, A.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 71 - 76
  • [40] The period function and the Harmonic Balance Method
    Garcia-Saldana, Johanna D.
    Gasull, Armengol
    BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (01): : 33 - 60