Short-Term Load Forecasting Based on the Analysis of User Electricity Behavior

被引:17
|
作者
Li, Yuancheng [1 ]
Guo, Panpan [1 ]
Li, Xiang [1 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
来源
ALGORITHMS | 2016年 / 9卷 / 04期
关键词
smart meter; clustering algorithm; load forecasting; OS-ELM; electricity behavior analysis;
D O I
10.3390/a9040080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The smart meter is an important part of the smart grid, and in order to take full advantage of smart meter data, this paper mines the electricity behaviors of smart meter users to improve the accuracy of load forecasting. First, the typical day loads of users are calculated separately according to different date types (ordinary workdays, day before holidays, holidays). Second, the similarity between user electricity behaviors is mined and the user electricity loads are clustered to classify the users with similar behaviors into the same cluster. Finally, the load forecasting model based on the Online Sequential Extreme Learning Machine (OS-ELM) is applied to different clusters to conduct load forecasting and the load forecast is summed to obtain the system load. In order to prove the validity of the proposed method, we performed simulation experiments on the MATLAB platform using smart meter data from the Ireland electric power cooperation. The experimental results show that the proposed method is able to mine the user electricity behaviors deeply, improve the accuracy of load forecasting by the reasonable clustering of users, and reveal the relationship between forecasting accuracy and cluster numbers.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A hybrid kohonen-based approach for short-term load forecasting
    Gleeson, Brian
    Kechadi, Tahar
    3RD INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS, AND APPLICAT/4TH INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 1, 2006, : 176 - 180
  • [42] Short-term load forecasting based on EEMD-Adaboost-BP
    Lin, Wenshuai
    Bin Zhang
    Li, Hongyi
    Lu, Renquan
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2022, 10 (01) : 846 - 853
  • [43] Confidence intervals for neural network based short-term load forecasting
    da Silva, AP
    Moulin, LS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (04) : 1191 - 1196
  • [44] Short-term electric load forecasting based on a neural fuzzy network
    Ling, SH
    Leung, FHF
    Lam, HK
    Tam, PKS
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2003, 50 (06) : 1305 - 1316
  • [45] The neural network model based on PSO for short-term load forecasting
    Sun, Wei
    Zhang, Ying-Xia
    Li, Fang-Tao
    PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3069 - +
  • [46] Short-Term Load Forecasting Based on Data Decomposition and Dynamic Correlation
    Wang, Min
    Zuo, Fanglin
    Wu, Chao
    Yu, Zixuan
    Chen, Yuan
    Wang, Huilin
    IEEE ACCESS, 2023, 11 : 107297 - 107308
  • [47] Advancement of statistical based modeling techniques for short-term load forecasting
    ElKeib, AA
    Ma, X
    Ma, H
    ELECTRIC POWER SYSTEMS RESEARCH, 1995, 35 (01) : 51 - 58
  • [48] Short-term power load forecasting based on SKDR hybrid model
    Yuan, Yongliang
    Yang, Qingkang
    Ren, Jianji
    Mu, Xiaokai
    Wang, Zhenxi
    Shen, Qianlong
    Li, Yanan
    ELECTRICAL ENGINEERING, 2024,
  • [49] Short-Term Load Forecasting of LSSVM Based on Improved PSO Algorithm
    Gong, Qianhui
    Lu, Wenjun
    Gong, Wenlong
    Wang, Xueting
    PATTERN RECOGNITION (CCPR 2014), PT I, 2014, 483 : 63 - 71
  • [50] Application of SVM Based on Rough Sets to Short-term Load Forecasting
    Zhang Jinhui
    Deng Jiajia
    2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 3, PROCEEDINGS, 2009, : 572 - +