Short-Term Load Forecasting Based on the Analysis of User Electricity Behavior

被引:17
|
作者
Li, Yuancheng [1 ]
Guo, Panpan [1 ]
Li, Xiang [1 ]
机构
[1] North China Elect Power Univ, Sch Control & Comp Engn, Beijing 102206, Peoples R China
来源
ALGORITHMS | 2016年 / 9卷 / 04期
关键词
smart meter; clustering algorithm; load forecasting; OS-ELM; electricity behavior analysis;
D O I
10.3390/a9040080
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The smart meter is an important part of the smart grid, and in order to take full advantage of smart meter data, this paper mines the electricity behaviors of smart meter users to improve the accuracy of load forecasting. First, the typical day loads of users are calculated separately according to different date types (ordinary workdays, day before holidays, holidays). Second, the similarity between user electricity behaviors is mined and the user electricity loads are clustered to classify the users with similar behaviors into the same cluster. Finally, the load forecasting model based on the Online Sequential Extreme Learning Machine (OS-ELM) is applied to different clusters to conduct load forecasting and the load forecast is summed to obtain the system load. In order to prove the validity of the proposed method, we performed simulation experiments on the MATLAB platform using smart meter data from the Ireland electric power cooperation. The experimental results show that the proposed method is able to mine the user electricity behaviors deeply, improve the accuracy of load forecasting by the reasonable clustering of users, and reveal the relationship between forecasting accuracy and cluster numbers.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A new method for short-term electricity load forecasting
    Wang, Jing-Min
    Wang, Li-Ping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2008, 30 (3-4) : 331 - 344
  • [2] Short-Term Electricity Load Forecasting Based on Temporal Fusion Transformer Model
    Pham Canh Huy
    Nguyen Quoc Minh
    Nguyen Dang Tien
    Tao Thi Quynh Anh
    IEEE ACCESS, 2022, 10 : 106296 - 106304
  • [3] Short-term electricity load forecasting based on particle swarm algorithm and SVM
    Wang, Li-ping
    Wang, Jing-min
    Zhao, Dan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS AND KNOWLEDGE ENGINEERING (ISKE 2007), 2007,
  • [4] Short-Term Electricity Load Forecasting Based on NeuralProphet and CNN-LSTM
    Lu, Shuai
    Bao, Taotao
    IEEE ACCESS, 2024, 12 : 76870 - 76879
  • [5] GA-ANN Short-Term Electricity Load Forecasting
    Viegas, Joaquim L.
    Vieira, Susana M.
    Melicio, Rui
    Mendes, Victor M. F.
    Sousa, Joao M. C.
    TECHNOLOGICAL INNOVATION FOR CYBER-PHYSICAL SYSTEMS, 2016, 470 : 485 - 493
  • [6] Short-term Load Forecasting Based on Load Profiling
    Ramos, Sergio
    Soares, Joao
    Vale, Zita
    Ramos, Sandra
    2013 IEEE POWER AND ENERGY SOCIETY GENERAL MEETING (PES), 2013,
  • [7] Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application
    Khan, Salahuddin
    SUSTAINABILITY, 2023, 15 (16)
  • [8] Short-term Load Forecasting Model Based on Attention-LSTM in Electricity Market
    Peng W.
    Wang J.
    Yin S.
    Dianwang Jishu/Power System Technology, 2019, 43 (05): : 1745 - 1751
  • [9] Short-Term Load Forecasting on Individual Consumers
    Jales Melo, Joao Victor
    Soares Lira, George Rossany
    Costa, Edson Guedes
    Leite Neto, Antonio F.
    Oliveira, Iago B.
    ENERGIES, 2022, 15 (16)
  • [10] Short-Term Load Forecasting Based on Bayes and SVR
    Li, Yanmei
    Ren, Feng
    Sun, Wei
    INTELLIGENT ROBOTICS AND APPLICATIONS, PT I, PROCEEDINGS, 2008, 5314 : 643 - 650