Fast nonlinear model predictive control of a chemical reactor: a random shooting approach

被引:10
作者
Bakarac, Peter [1 ]
Kvasnica, Michal [1 ]
机构
[1] FCFT STU Bratislava, Dept Informat Engn & Proc Control, Inst Informat Engn Automat & Math, Radlinskeho 9, Bratislava 81237, Slovakia
关键词
nonlinear model predictive control; random shooting; continuous stirred tank reactor;
D O I
10.2478/acs-2018-0025
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This paper presents a fast way of implementing nonlinear model predictive control (NMPC) using the random shooting approach. Instead of calculating the optimal control sequence by solving the NMPC problem as a nonlinear programming (NLP) problem, which is time consuming, a sub-optimal, but feasible, sequence of control inputs is determined randomly. To minimize the induced sub-optimality, numerous random control sequences are selected and the one that yields the smallest cost is selected. By means of a motivating case study we demonstrate that the random shooting-based approach is superior, from a computational point of view, to state-of-the-art NLP solvers, and features a low level of sub-optimality. The case study involves a continuous stirred tank reactor where a fast multi-component chemical reaction takes place.
引用
收藏
页码:175 / 181
页数:7
相关论文
共 22 条
[1]  
Allgower F., 2012, NONLINEAR MODEL PRED, V26
[2]  
[Anonymous], 2018, ARXIV180607259
[3]   Robust MPC of an unstable chemical reactor using the nominal system optimization [J].
Bakosova, Monika ;
Oravec, Juraj .
ACTA CHIMICA SLOVACA, 2014, 7 (02) :87-93
[4]   Model predictive control-based robust stabilization of a chemical reactor [J].
Bakosova, Monika ;
Oravec, Juraj ;
Matejickova, Katarina .
CHEMICAL PAPERS, 2013, 67 (09) :1146-1156
[5]  
Boyd S., 2004, CONVEX OPTIMIZATION, DOI https://doi.org/10.1017/CBO9780511804441
[6]   Global optimization for parameter estimation of differential-algebraic systems [J].
Cizniar, Michal ;
Podmajersky, Marian ;
Hirmajer, Tomas ;
Fikar, Miroslav ;
Latifi, Abderrazak M. .
CHEMICAL PAPERS, 2009, 63 (03) :274-283
[7]   A simple randomised algorithm for convex optimisation [J].
Dyer, M. ;
Kannan, R. ;
Stougie, L. .
MATHEMATICAL PROGRAMMING, 2014, 147 (1-2) :207-229
[8]   Robust control in presence of parametric uncertainties: Observer-based feedback controller design [J].
Fissore, Davide .
CHEMICAL ENGINEERING SCIENCE, 2008, 63 (07) :1890-1900
[9]  
Kennedy J, 1995, 1995 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS PROCEEDINGS, VOLS 1-6, P1942, DOI 10.1109/icnn.1995.488968
[10]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680