A Non-Mixture Cure Model for Right-Censored Data with Frechet Distribution

被引:8
作者
Kutal, Durga H. [1 ,2 ]
Qian, Lianfen [1 ,3 ]
机构
[1] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
[2] Wake Forest Univ, Winston Salem, NC 27101 USA
[3] Wenzhou Univ, Wenzhou, Peoples R China
关键词
Non-mixture model; Frechet distribution; Right-censored survival data; Maximum likelihood method;
D O I
10.3390/stats1010013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper considers a non-mixture cure model for right-censored data. It utilizes the maximum likelihood method to estimate model parameters in the non-mixture cure model. The simulation study is based on Frechet susceptible distribution to evaluate the performance of the method. Compared with Weibull and exponentiated exponential distributions, the non-mixture Frechet distribution is shown to be the best in modeling a real data on allogeneic marrow HLA-matched donors and ECOG phase III clinical trial e1684 data.
引用
收藏
页码:176 / 188
页数:13
相关论文
共 23 条
[1]   SURVIVAL CURVE FOR CANCER PATIENTS FOLLOWING TREATMENT [J].
BERKSON, J ;
GAGE, RP .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1952, 47 (259) :501-515
[2]  
BOAG JW, 1949, J ROY STAT SOC B, V11, P15
[3]   Random effects in promotion time cure rate models [J].
Carvalho Lopes, Celia Mendes ;
Bolfarine, Heleno .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (01) :75-87
[4]   A new Bayesian model for survival data with a surviving fraction [J].
Chen, MH ;
Ibrahim, JG ;
Sinha, D .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (447) :909-919
[5]   THE USE OF MIXTURE-MODELS FOR THE ANALYSIS OF SURVIVAL-DATA WITH LONG-TERM SURVIVORS [J].
FAREWELL, VT .
BIOMETRICS, 1982, 38 (04) :1041-1046
[6]   Semiparametric regression analysis of interval-censored data [J].
Goetghebeur, E ;
Ryan, L .
BIOMETRICS, 2000, 56 (04) :1139-1144
[7]   SURVIVORSHIP ANALYSIS WHEN CURE IS A POSSIBILITY - A MONTE-CARLO STUDY [J].
GOLDMAN, AI .
STATISTICS IN MEDICINE, 1984, 3 (02) :153-163
[8]   Maximum likelihood estimation in random effects cure rate models with nonignorable missing covariates [J].
Herring, AH ;
Ibrahim, JG .
BIOSTATISTICS, 2002, 3 (03) :387-405
[9]   Bayesian semiparametric models for survival data with a cure fraction [J].
Ibrahim, JG ;
Chen, MH ;
Sinha, D .
BIOMETRICS, 2001, 57 (02) :383-388