THE ASYMPTOTIC-BEHAVIOR OF THE SOLUTIONS OF SOME SEMILINEAR ELLIPTIC-EQUATIONS IN CYLINDRICAL DOMAINS

被引:25
作者
VEGA, JM
机构
[1] E.T.S.I. Aeronáuticos, Universidad Politécnica de Madrid
关键词
D O I
10.1006/jdeq.1993.1025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The bounded solutions of some semilinear elliptic equations in unbounded cylindrical domains are considered. Their asymptotic behavior as |x| → ∞ (x = coordinate along the axis of the cylinder) is analyzed and used to establish uniqueness and monotonicity in the x-variable of travelling wavefronts of some parabolic problems. © 1993 Academic Press, Inc.
引用
收藏
页码:119 / 152
页数:34
相关论文
共 25 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[3]   PROPERTIES OF SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE [J].
AGMON, S ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1963, 16 (02) :121-&
[4]  
Amick C. J., 1984, ANN SCUOLA NORM-SCI, V11, P441
[5]   NON-LINEAR ELLIPTIC EIGENVALUE PROBLEMS ON AN INFINITE STRIP - GLOBAL THEORY OF BIFURCATION AND ASYMPTOTIC BIFURCATION [J].
AMICK, CJ ;
TOLAND, JF .
MATHEMATISCHE ANNALEN, 1983, 262 (03) :313-342
[6]  
BERESTYCKI H, 1989, J REINE ANGEW MATH, V396, P14
[7]  
Berestycki H., 1990, ANAL ET CETERA, P115
[8]  
Berestycki H., 1988, J GEOM PHYS, V5, P237
[9]  
BONA JL, 1983, J MATH PURE APPL, V62, P389
[10]   MULTIDIMENSIONAL TRAVELING-WAVE SOLUTIONS TO REACTION-DIFFUSION EQUATIONS [J].
BUONINCONTRI, S ;
HAGSTROM, T .
IMA JOURNAL OF APPLIED MATHEMATICS, 1989, 43 (03) :261-271