Hybrid Gabor based Local Binary Patterns Texture Features for classification of Breast Mammograms

被引:0
作者
AlQoud, Amal [1 ]
Jaffar, M. Arfan [1 ]
机构
[1] Al Imam Mohammad Ibn Saud Islamic Univ IMSIU, Coll Comp & Informat Sci, Riyadh, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY | 2016年 / 16卷 / 04期
关键词
Hybrid Features; LBP; Gabor; Classification;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Breast cancer is one of the most widespread cancers in the world. A digital mammogram is an X-ray picture of the breast, which used for early detection of breast cancer and other abnormalities. The early detection of the cancer can reduce mortality. Mammograms help radiologists to detect the malignant masses precisely at their early stage. But, the mammograms are usually characterized by low contrast therefore it is not easy to read by the radiologist to detect small masses and micro-calcifications, which are indirect signs of malignancy, precisely and in their early stage. So we need a Computer aided diagnosis (CAD) system for mammography, which simulates the process of the radiologist and used to interpret mammography image and check for the presence of breast cancer and distinguish between malignant and benign tumors of breast cancer. In this paper, we introduce an approach for mammogram breast cancer detection system. This system involves three phases. : preprocessing of mammogram image, features extraction, and classification. Texture features based upon Gabor filters with Local Binary Patterns has been extracted for classification.
引用
收藏
页码:16 / 21
页数:6
相关论文
共 13 条
[1]   A completely automated CAD system for mass detection in a large mammographic database [J].
Bellotti, R. ;
De Carlo, F. ;
Tangaro, S. ;
Gargano, G. ;
Maggipinto, G. ;
Castellano, M. ;
Massafra, R. ;
Cascio, D. ;
Fauci, F. ;
Magro, R. ;
Raso, G. ;
Lauria, A. ;
Forni, G. ;
Bagnasco, S. ;
Cerello, P. ;
Zanon, E. ;
Cheran, S. C. ;
Torres, E. Lopez ;
Bottigli, U. ;
Masala, G. L. ;
Oliva, P. ;
Retico, A. ;
Fantacci, M. E. ;
Cataldo, R. ;
De Mitri, I. ;
De Nunzio, G. .
MEDICAL PHYSICS, 2006, 33 (08) :3066-3075
[2]  
Gargouri N., 2012, INT J BIOMEDICAL IMA, P1
[3]   Feature extraction from a signature based on the turning angle function for the classification of breast tumors [J].
Guliato, Denise ;
de Carvalho, Juliano D. ;
Rangayyan, Rangaraj M. ;
Santiago, Sergio A. .
JOURNAL OF DIGITAL IMAGING, 2008, 21 (02) :129-144
[4]  
Hussain M., 2012, EFFECTIVE EXTRACTION, V33, P29
[5]  
Hussain M., 2012, MASS DETECTION DIGIT, P1
[6]   Automated detection of masses in mammograms by local adaptive thresholding [J].
Kom, Guillaume ;
Tiedeu, Alain ;
Kom, Martin .
COMPUTERS IN BIOLOGY AND MEDICINE, 2007, 37 (01) :37-48
[7]  
Lahmiri S., 2011, 2011 IEEE 9th International New Circuits and Systems Conference (NEWCAS 2011), P53, DOI 10.1109/NEWCAS.2011.5981217
[8]   A textural approach for mass false positive reduction in mammography [J].
Llado, X. ;
Oliver, A. ;
Freixenet, J. ;
Marti, R. ;
Marti, J. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (06) :415-422
[9]   Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J].
Ojala, T ;
Pietikäinen, M ;
Mäenpää, T .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2002, 24 (07) :971-987
[10]   Detection of masses in mammogram images using CNN, geostatistic functions and SVM [J].
Sampaio, Wener Borges ;
Diniz, Edgar Moraes ;
Silva, Aristofanes Correa ;
de Paiva, Anselmo Cardoso ;
Gattass, Marcelo .
COMPUTERS IN BIOLOGY AND MEDICINE, 2011, 41 (08) :653-664