GENERALIZED DAVENPORT-SCHINZEL SEQUENCES

被引:25
作者
KLAZAR, M
VALTR, P
机构
[1] CHARLES UNIV,DEPT APPL MATH KAM,CS-11800 PRAGUE 1,CZECH REPUBLIC
[2] FREE UNIV BERLIN,FACHBEREICH MATH,GRADUIERTENKOLLEG ALGORITHMISCHE DISKRETE MATH,D-14195 BERLIN,GERMANY
关键词
D O I
10.1007/BF01302967
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The extremal function Ex(u, n) (introduced in the theory of Davenport-Schinzel sequences in other notation) denotes for a fixed finite alternating sequence u = ababa... the maximum length of a finite sequence v over n symbols with no immediate repetition which does not contain u. Here (following the idea of J. Nesetril) we generalize this concept for arbitrary sequence u. We summarize the already known properties of Ex(u, n) and we present also two new theorems which give good upper bounds on Ex(u, n) for u consisting of (two) smaller subsequences u(i) provided we have good upper bounds on Ex(u(i), n). We use these theorems to describe a wide class of sequences u (''linear sequences'') for which Ex(u, n) = O(n). Both theorems are used for obtaining new superlinear upper bounds as well. We partially characterize linear sequences over three symbols. We also present several problems about Ex(u, n).
引用
收藏
页码:463 / 476
页数:14
相关论文
共 15 条
[1]   GENERALIZED DAVENPORT-SCHINZEL SEQUENCES WITH LINEAR UPPER BOUND [J].
ADAMEC, R ;
KLAZAR, M ;
VALTR, P .
DISCRETE MATHEMATICS, 1992, 108 (1-3) :219-229
[2]  
Agarwal P. K., 1991, INTERSECTION DECOMPO
[3]   SHARP UPPER AND LOWER BOUNDS ON THE LENGTH OF GENERAL DAVENPORT-SCHINZEL SEQUENCES [J].
AGARWAL, PK ;
SHARIR, M ;
SHOR, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1989, 52 (02) :228-274
[4]  
DAVENPORT H, 1971, ACTA ARITH, V17, P363
[5]   DAVENPORT-SCHINZEL THEORY OF MATRICES [J].
FUREDI, Z ;
HAJNAL, P .
DISCRETE MATHEMATICS, 1992, 103 (03) :233-251
[6]   NONLINEARITY OF DAVENPORT SCHINZEL SEQUENCES AND OF GENERALIZED PATH COMPRESSION SCHEMES [J].
HART, S ;
SHARIR, M .
COMBINATORICA, 1986, 6 (02) :151-177
[7]  
KLAZAR M, 1993, COMMENT MATH UN CARO, V34, P667
[8]  
KLAZAR M, IN PRESS J COMB TH A
[9]  
Klazar Martin, 1992, COMMENT MATH U CAROL, V33, P737
[10]   A SIMPLIFIED CONSTRUCTION OF NONLINEAR DAVENPORT-SCHINZEL SEQUENCES [J].
KOMJATH, P .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1988, 49 (02) :262-267