ON THE ZEROS OF MEROMORPHIC FUNCTIONS OF THE FORM F(Z)=SIGMA(K=1)INFINITY A(K)/Z-Z(K)

被引:30
作者
EREMENKO, A
LANGLEY, J
ROSSI, J
机构
[1] UNIV NOTTINGHAM,DEPT MATH,NOTTINGHAM NG7 2RD,ENGLAND
[2] VIRGINIA POLYTECH INST & STATE UNIV,DEPT MATH,BLACKSBURG,VA 24061
[3] UNIV ILLINOIS,CHICAGO,IL 60680
[4] YORK UNIV,YORK,N YORKSHIRE,ENGLAND
来源
JOURNAL D ANALYSE MATHEMATIQUE | 1994年 / 62卷
关键词
D O I
10.1007/BF02835958
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the zero distribution of meromorphic functions of the form f(z) = Sigma(k=1)(infinity) a(k)/z-z(k) where a(k) > 0. Noting that f is the complex conjugate of the gradient of a logarithmic potential, our results have application in the study of the equilibrium points of such a potential. Furthermore, answering a question of Hayman, we also show that the derivative of a meromorphic function of order at most one, minimal type has infinitely many zeros.
引用
收藏
页码:271 / 286
页数:16
相关论文
共 15 条
[1]  
ANDERSON RD, 1983, ECON HIST REV, V36, P518
[2]  
CLUNIE J, IN PRESS J LONDON MA
[3]   CONVOLUTION INEQUALITIES, REGULAR VARIATION AND EXCEPTIONAL SETS [J].
DRASIN, D ;
SHEA, DF .
JOURNAL D ANALYSE MATHEMATIQUE, 1976, 29 :232-293
[4]  
EREMENKO M, 1990, SOV MATH, V48, P386
[5]  
Goldberg A. A., 2008, VALUE DISTRIBUTION M
[6]  
Hayman W. K., 1976, SUBHARMONIC FUNCTION, VI
[7]  
Hayman W. K., 1964, MEROMORPHIC FUNCTION
[8]  
Hayman W.K., 1989, SUBHARMONIC FUNCTION, V2
[9]  
Hayman W.K., 1958, MULTIVALENT FUNCTION
[10]   ON THE GROWTH OF SOLUTIONS OF F'' + GF' + HF = 0 [J].
HELLERSTEIN, S ;
MILES, J ;
ROSSI, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 324 (02) :693-706