The effects of butylated hydroxyanisole (BHA), a commonly used food antioxidant, on oxygen consumption, ATPase activity, and the redox state of some electron carriers of rat liver mitochondria have been studied. It was observed that BHA slightly stimulated state 4 respiration but strongly inhibited ADP- and uncoupler-stimulated respiration on NAD+- and FAD-linked substrates. ATPase activity and vectorial H+ ejection were affected only slightly by BHA, suggesting that BHA predominantly inhibits mitochondrial electron flow. Experiments to determine its site of action showed that BHA did not noticeably affect electron flow through cytochrome oxidase; in contrast, NADH:duroquinone reductase activity and electron flow through ubiquinone-cytochrome b-cytochromec complex were inhibited strongly because the oxidation of duroquinol was affected markedly. The BHA block of electron transport was bypassed by both N,N,N′,N′-tettamethyl-p-phenyleaediamine and 2,6-dichlorophenolindophenol. Also, the presence of BHA changed the redox state of cytochrome b and C1 to a more oxidized level. These observations suggest that electron transport is inhibited by BHA at the NADH-ubiquinone and at the ubiquinone-cytochrome b levels. From Hill plots, it is clear that more than one binding site is involved in complete inhibition; in addition, available evidence suggests that there may be two sites at the substrate side of ubiquinone and another two sites at the oxygen side of ubiquinone. Consequently, mitochondrial ATP synthesis would be interrupted. This event could be related to the toxicity of BHA. © 1990.