In this paper the solutions of the fractional Euler-Lagrange equations corresponding to singular fractional Lagrangians were examined. We observed that if a Lagrangian is singular in the classical sense, it remains singular after being fractionally generalized. The fractional Lagrangian is non-local but its gauge symmetry was preserved despite complexity of equations in fractional cases. We generalized four examples of singular Lagrangians admitting gauge symmetry in fractional case and found solutions to corresponding Euler-Lagrange equations.