EXISTENCE OF SOLUTIONS WITH SINGULARITIES FOR THE MAXIMAL SURFACE EQUATION IN MINKOWSKI SPACE

被引:20
作者
KLYACHIN, AA
MIKLYUKOV, VM
机构
关键词
D O I
10.1070/SM1995v080n01ABEH003515
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Omega be a domain in R(n), and A = (a(1),..., a(N)) a finite tuple of points in Omega. The problem is considered of the existence of a solution for the maximal surface equation in Omega \ A, where Dirichlet boundary data are given on partial derivative Omega, and the flows of the time gradient on the graph of the solution in the Minkowski space R(1)(n+1) are given at the points a(i).
引用
收藏
页码:87 / 104
页数:18
相关论文
共 8 条
[1]   SPACELIKE HYPERSURFACES WITH PRESCRIBED BOUNDARY-VALUES AND MEAN-CURVATURE [J].
BARTNIK, R ;
SIMON, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1982, 87 (01) :131-152
[2]   MAXIMAL SPACE-LIKE HYPERSURFACES IN LORENTZ-MINKOWSKI SPACES [J].
CHENG, SY ;
YAU, ST .
ANNALS OF MATHEMATICS, 1976, 104 (03) :407-419
[4]  
KLYACHIN AA, 1992, MAT SBORNIK, V183, P49
[5]  
MIKLYUKOV VM, 1992, SIB MAT ZH, V33, P131
[6]  
MIKLYUKOV VM, 1992, MAT SBORNIK, V183, P45
[7]  
Reshetnyak Yu.G., 1969, SIBIRSK MAT ZH, V10, P1109
[8]  
SYVIRIV GD, 1985, GENERALIZED PRINCIPL