SOME APPLICATIONS OF THE PERTURBATION THEORY TO FRACTIONAL CALCULUS

被引:0
作者
Aleroev, T. S. [1 ,2 ,3 ]
Aleroeva, H. T. [4 ]
机构
[1] Moscow Inst Municipal Serv & Construct, Fac Higher Math, Moscow, Russia
[2] Govt Russian Federat, Acad Natl Econ, Moscow 119571, Russia
[3] Moscow Inst Municipal Econ & Construct, Moscow, Russia
[4] Moscow Tech Univ Commun & Informat, Moscow, Russia
来源
MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS | 2010年 / 50卷
关键词
Caputo's derivatives; Riemann Liouville derivatives; fractional differential equation; two-point boundary value problem;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Spectral analysis of a class of integral operators associated with fractional order differential equations arising in mechanics is carried out. The connection between the eigenvalues of these operators and zeros of Mittag Leffler type functions is established. Sufficient conditions for complete non-self-adjointness and completeness of the systems of eigenfunctions are given.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 8 条
[1]  
Aleroev T.S., 2000, THESIS
[2]  
Aleroev TS, 1998, DIFF EQUAT+, V34, P126
[3]   On one class of operators associated with differential equations of fractional order [J].
Aleroev, TS .
SIBERIAN MATHEMATICAL JOURNAL, 2005, 46 (06) :963-968
[4]  
Djrbashian M.M., 1970, IZV ACAD NAUK ARMJAN, V5, P71
[5]  
FRIEDRICHS K. O., 1965, LECT APPL MATH, VIII
[6]   Regular Mittag-Leffler kernels and spectral decomposition of a class of non-selfadjoint operators [J].
Gubreev, GM .
IZVESTIYA MATHEMATICS, 2005, 69 (01) :15-57
[7]  
KATO T., 1972, IZDAT MIR MOSCOW
[8]  
LOGUNOV B. V., 1963, IZV AKAD NAUK UZSSR, P131