ABOUT THE CAMASSA-HOLM EQUATION WITH A SELF-CONSISTENT SOURCE

被引:0
|
作者
Baltaeva, I. I. [1 ]
Urazboev, G. U. [1 ]
机构
[1] Urgench State Univ, Hamid Olimjon Str 14, Urgench 220100, Uzbekistan
来源
UFA MATHEMATICAL JOURNAL | 2011年 / 3卷 / 02期
关键词
the Camassa-Holm equation; inverse scattering problem; scattering data; Lax pair; eigenvalue; eigenfunction;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to solving the Camassa-Holm equation with a self-consistent source of a special type by the inverse scattering method. The main result consists in determining the evolution of the scattering data for the spectral problem associated with the Camassa-Holm equation with a self-consistent source of a special type. In contrast to the classical Camassa-Holm equation, the eigenvalues of the spectral problem are moving in the problem under consideration. The resulting equalities determine the evolution of the scattering data completely; this fact allows us to apply the inverse scattering method for solving the considered problem.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 50 条
  • [31] Minimization of eigenvalues for the Camassa-Holm equation
    Feng, Hao
    Meng, Gang
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2021, 23 (04)
  • [32] Stability for the periodic Camassa-Holm equation
    Lenells, J
    MATHEMATICA SCANDINAVICA, 2005, 97 (02) : 188 - 200
  • [33] Backlund Transformations for the Camassa-Holm Equation
    Rasin, Alexander G.
    Schiff, Jeremy
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (01) : 45 - 69
  • [34] Differential invariants of Camassa-Holm equation
    Li, Wei
    Su, Zhong-Yu
    Wang, Fei
    Li, Wen-Ting
    CHINESE JOURNAL OF PHYSICS, 2019, 59 : 153 - 159
  • [35] On the Cauchy problem of the Camassa-Holm equation
    Dai H.-H.
    Kwek K.-H.
    Gao H.-J.
    Qu C.-C.
    Frontiers of Mathematics in China, 2006, 1 (1) : 144 - 159
  • [36] On the integrable perturbations of the Camassa-Holm equation
    Kraenkel, RA
    Senthilvelan, M
    Zenchuk, AI
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (05) : 3160 - 3169
  • [38] Conservation laws of the Camassa-Holm equation
    Lenells, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (04): : 869 - 880
  • [39] Multisymplectic method for the Camassa-Holm equation
    Zhang, Yu
    Deng, Zi-Chen
    Hu, Wei-Peng
    ADVANCES IN DIFFERENCE EQUATIONS, 2016, : 1 - 12
  • [40] An Integrable Matrix Camassa-Holm Equation
    产丽凤
    夏保强
    周汝光
    Communications in Theoretical Physics, 2019, 71 (12) : 1399 - 1404