ABOUT THE CAMASSA-HOLM EQUATION WITH A SELF-CONSISTENT SOURCE

被引:0
作者
Baltaeva, I. I. [1 ]
Urazboev, G. U. [1 ]
机构
[1] Urgench State Univ, Hamid Olimjon Str 14, Urgench 220100, Uzbekistan
来源
UFA MATHEMATICAL JOURNAL | 2011年 / 3卷 / 02期
关键词
the Camassa-Holm equation; inverse scattering problem; scattering data; Lax pair; eigenvalue; eigenfunction;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper is devoted to solving the Camassa-Holm equation with a self-consistent source of a special type by the inverse scattering method. The main result consists in determining the evolution of the scattering data for the spectral problem associated with the Camassa-Holm equation with a self-consistent source of a special type. In contrast to the classical Camassa-Holm equation, the eigenvalues of the spectral problem are moving in the problem under consideration. The resulting equalities determine the evolution of the scattering data completely; this fact allows us to apply the inverse scattering method for solving the considered problem.
引用
收藏
页码:10 / 18
页数:9
相关论文
共 47 条
[21]   Conformal and geometric properties of the Camassa-Holm hierarchy [J].
Ivanov, Rossen I. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 19 (03) :545-554
[22]   A fast solver of Legendre-Laguerre spectral element method for the Camassa-Holm equation [J].
Xuhong Yu ;
Xueqin Ye ;
Zhongqing Wang .
Numerical Algorithms, 2021, 88 :1-23
[23]   A fast solver of Legendre-Laguerre spectral element method for the Camassa-Holm equation [J].
Yu, Xuhong ;
Ye, Xueqin ;
Wang, Zhongqing .
NUMERICAL ALGORITHMS, 2021, 88 (01) :1-23
[24]   Integration of mKdV Equation with a Self-Consistent Source in the Class of Finite Density Functions in the Case of Moving Eigenvalues [J].
K. A. Mamedov .
Russian Mathematics, 2020, 64 :66-78
[25]   Integration of mKdV Equation with a Self-Consistent Source in the Class of Finite Density Functions in the Case of Moving Eigenvalues [J].
Mamedov, K. A. .
RUSSIAN MATHEMATICS, 2020, 64 (10) :66-78
[26]   A four-component Camassa-Holm type hierarchy [J].
Li, Nianhua ;
Liu, Q. P. ;
Popowicz, Z. .
JOURNAL OF GEOMETRY AND PHYSICS, 2014, 85 :29-39
[27]   Minimization of the first positive Neumann-Dirichlet eigenvalue for the Camassa-Holm equation with indefinite potential [J].
Zhang, Haiyan ;
Ao, Jijun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 390 :525-536
[28]   On the isospectral problem of the Camassa–Holm equation [J].
Yaru Dou ;
Jieyu Han ;
Gang Meng .
Archiv der Mathematik, 2023, 121 :67-76
[29]   THE TWO-COMPONENT μ-CAMASSA-HOLM SYSTEM WITH PEAKED SOLUTIONS [J].
Li, Yingying ;
Fu, Ying ;
Qu, Changzheng .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (10) :5929-5954
[30]   Integration of the differential–difference sine-Gordon equation with a self-consistent source [J].
B. A. Babajanov ;
A. K. Babadjanova ;
A. Sh. Azamatov .
Theoretical and Mathematical Physics, 2022, 210 :327-336