Quantum Transport Simulation of High-Power 4.6-mu m Quantum Cascade Lasers

被引:13
作者
Jonasson, Olafur [1 ]
Mei, Song [1 ]
Karimi, Farhad [1 ]
Kirch, Jeremy [1 ]
Botez, Dan [1 ]
Mawst, Luke [1 ]
Knezevic, Irena [1 ]
机构
[1] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
关键词
QCL; density matrix; midinfrared; phonons; quantum transport; simulation; superlattice;
D O I
10.3390/photonics3020038
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present a quantum transport simulation of a 4.6-mu m quantum cascade laser (QCL) operating at high power near room temperature. The simulation is based on a rigorous density-matrix-based formalism, in which the evolution of the single-electron density matrix follows a Markovian master equation in the presence of applied electric field and relevant scattering mechanisms. We show that it is important to allow for both position-dependent effective mass and for effective lowering of very thin barriers in order to obtain the band structure and the current-field characteristics comparable to experiment. Our calculations agree well with experiments over a wide range of temperatures. We predict a room-temperature threshold field of 62.5 kV/cm and a characteristic temperature for threshold-current-density variation of T-0 = 199 K. We also calculate electronic in-plane distributions, which are far from thermal, and show that subband electron temperatures can be hundreds to thousands of degrees higher than the heat sink. Finally, we emphasize the role of coherent tunneling current by looking at the size of coherences, the off-diagonal elements of the density matrix. At the design lasing field, efficient injection manifests itself in a large injector/upper lasing level coherence, which underscores the insufficiency of semiclassical techniques to address injection in QCLs.
引用
收藏
页数:14
相关论文
共 48 条
  • [1] Room temperature continuous wave operation of quantum cascade lasers with watt-level optical power
    Bai, Y.
    Darvish, S. R.
    Slivken, S.
    Zhang, W.
    Evans, A.
    Nguyen, J.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2008, 92 (10)
  • [2] Room temperature quantum cascade lasers with 27% wall plug efficiency
    Bai, Y.
    Bandyopadhyay, N.
    Tsao, S.
    Slivken, S.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2011, 98 (18)
  • [3] Room temperature continuous wave operation of λ ∼ 3-3.2 μm quantum cascade lasers
    Bandyopadhyay, N.
    Bai, Y.
    Tsao, S.
    Nida, S.
    Slivken, S.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 101 (24)
  • [4] High power, continuous wave, room temperature operation of λ ∼ 3.4 μm and λ ∼ 3.55 μm InP-based quantum cascade lasers
    Bandyopadhyay, N.
    Slivken, S.
    Bai, Y.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2012, 100 (21)
  • [5] Watt level performance of quantum cascade lasers in room temperature continuous wave operation at λ ∼ 3.76 μm
    Bandyopadhyay, N.
    Bai, Y.
    Gokden, B.
    Myzaferi, A.
    Tsao, S.
    Slivken, S.
    Razeghi, M.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (13)
  • [6] Temperature dependence of the key electro-optical characteristics for midinfrared emitting quantum cascade lasers
    Botez, D.
    Kumar, S.
    Shin, J. C.
    Mawst, L. J.
    Vurgaftman, I.
    Meyer, J. R.
    [J]. APPLIED PHYSICS LETTERS, 2010, 97 (07)
  • [7] Temperature sensitivity of the electro-optical characteristics for mid-infrared (λ=3-16 μm)-emitting quantum cascade lasers
    Botez, Dan
    Chang, Chun-Chieh
    Mawst, Luke J.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (04)
  • [8] Botez D, 2013, IEEE J SEL TOP QUANT, V19, DOI 10.1109/JSTQE.2012.2237387
  • [9] Breuer F. P. Heinz-Peter, 2002, THEORY OPEN QUANTUM
  • [10] Mid-IR quantum cascade lasers: Device technology and non-equilibrium Green's function modeling of electro-optical characteristics
    Bugajski, M.
    Gutowski, P.
    Karbownik, P.
    Kolek, A.
    Haldas, G.
    Pierscinski, K.
    Pierscinska, D.
    Kubacka-Traczyk, J.
    Sankowska, I.
    Trajnerowicz, A.
    Kosiel, K.
    Szerling, A.
    Grzonka, J.
    Kurzydlowski, K.
    Slight, T.
    Meredith, W.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2014, 251 (06): : 1144 - 1157