A trigonometry approach to balancing numbers and their related sequences

被引:0
作者
Ray, Prasanta Kumar [1 ]
机构
[1] Veer Surendra Sai Univ Technol, Burla, India
来源
SIGMAE | 2016年 / 5卷 / 02期
关键词
Triangular numbers; Balancing numbers; Lucas-balancing numbers; Cobalancing numbers; Recurrence relation;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The balancing numbers satisfy the second order linear homogeneous difference equation Bn+1 = 6B(n) - Bn-1 on the other hand the Fibonacci numbers are solution of the second order linear homogeneous difference equation Fn+1 = F-n + Fn-1, where Bn and F-n denote the nth balancing number and nth Fibonacci number respectively. In a paper, Smith introduced Fibonometry in connection with a differential equation called Fibonometric differential equation. In this study, we first introduce the balancometric differential equation and then obtain the balancometric functions as solutions of this equation.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 11 条
[1]  
Behera A, 1999, FIBONACCI QUART, V37, P98
[2]  
KOMATSU T., 2016, HIGHER ORDER IDENTIT
[3]  
Liptai K, 2004, FIBONACCI QUART, V42, P330
[4]  
Liptai K, 2016, FIBONACCI QUART, V54, P235
[5]  
LIPTAI K, 2006, ACTA MATH U OSTRAV, V14, P43
[6]  
Panda G. K., 2005, INT J MATH MATH SCI, V8, P1189
[7]  
Panda G.K., 2009, P 11 INT C FIBONACCI, V194, P185
[8]  
Patel BK, 2016, MATH REP, V18, P395
[9]  
Ray P., 2016, UNIFORM DISTRIBUTION, V11, P15, DOI DOI 10.1515/udt-2016-0002