SOME OPTIMAL DESIGNS OF BLOCK SIZE 2

被引:7
|
作者
BAGCHI, S
CHENG, CS
机构
[1] INDIAN STAT INST,CALCUTTA 700035,W BENGAL,INDIA
[2] UNIV CALIF BERKELEY,DEPT STAT,BERKELEY,CA 94720
基金
美国国家科学基金会;
关键词
E-OPTIMALITY; GROUP-DIVISIBLE DESIGN; RECTANGULAR ASSOCIATION SCHEME; REGULAR GRAPH DESIGN; RECTANGULAR LATTICE;
D O I
10.1016/0378-3758(93)90093-L
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Cheng and Constantine (J. Statistical Planning and Inference, 15, 1986) showed the E-optimality of some regular graph designs when the block size k greater-than-or-equal-to 3. For k=2, they could only prove the E-optimality over equireplicate designs. In this paper. we remove the restriction to equireplicate designs, thereby establishing the E-optimality of many designs with k=2 over the whole class of competing designs. As an application, we establish the E-optimality of a class of partially balanced incomplete block designs with a rectangular association scheme. Finally a simple method for constructing highly efficient designs of block size two is discussed.
引用
收藏
页码:245 / 253
页数:9
相关论文
共 50 条
  • [1] Optimal designs for quadratic regression with random block effects: The case of block size two
    Huang, Shih-Hao
    Cheng, Ching-Shui
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 175 : 67 - 77
  • [2] Balanced Incomplete Block Designs with Block Size 7
    Abel R.J.R.
    Greig M.
    Designs, Codes and Cryptography, 1998, 13 (1) : 5 - 30
  • [3] BALANCED TERNARY DESIGNS WITH BLOCK SIZE 4
    BILLINGTON, EJ
    KHODKAR, A
    MAHMOODIAN, ES
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 37 (01) : 95 - 126
  • [4] New E(s2)-optimal supersaturated designs constructed from incomplete block designs
    Nguyen, Nam-Ky
    Cheng, Ching-Shui
    TECHNOMETRICS, 2008, 50 (01) : 26 - 31
  • [5] Matching divisible designs with block size four
    Dukes, Peter J.
    Feng, Tao
    Ling, Alan C. H.
    DISCRETE MATHEMATICS, 2016, 339 (02) : 790 - 799
  • [6] Some new group divisible designs with block size 4 and two or three group sizes
    Abel, R. Julian R.
    Bunjamin, Yudhistira A.
    Combe, Diana
    JOURNAL OF COMBINATORIAL DESIGNS, 2020, 28 (08) : 614 - 628
  • [7] Group divisible designs with block size 4 and group sizes 2 and 5
    Abel, R. Julian R.
    Britz, Thomas
    Bunjamin, Yudhistira A.
    Combe, Diana
    JOURNAL OF COMBINATORIAL DESIGNS, 2022, 30 (06) : 367 - 383
  • [8] OPTIMAL BLOCK-DESIGNS WITH MINIMAL NUMBER OF OBSERVATIONS
    BAPAT, RB
    DEY, A
    STATISTICS & PROBABILITY LETTERS, 1991, 11 (05) : 399 - 402
  • [9] Super-simple group divisible designs with block size 4 and index 2
    Cao, H.
    Yan, F.
    Wei, R.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (09) : 2497 - 2503
  • [10] Some optimal row-column designs
    Chai F.-S.
    Cheng C.-S.
    Journal of Statistical Theory and Practice, 2011, 5 (1) : 59 - 67