Improving of the Modeling Technique of the Discrete-Continuous Stochastic Systems by the Method of Erlang Phases

被引:0
|
作者
Volochiy, B. [1 ]
Ozirkovskyy, L. [1 ]
Kulyk, I [1 ]
机构
[1] Natl Univ Lviv Polytech, Lvov, Ukraine
来源
VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA | 2012年 / 48期
关键词
reliability; expanded Markov model; non-Markov system; method of Erlang phases; queuing system;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The construction of models of behavior of discrete-continuous stochastic systems non-Markov type by the method of Erlang phases is the object of consideration. This paper shows the principles of improving the technology of building the models of discrete-continuous stochastic systems, that allows automated to build graph of states and transitions of non-Markov type systems with using the method of Erlang phases. Improved technology is illustrated by the example of a queuing system.
引用
收藏
页码:159 / 167
页数:9
相关论文
共 50 条
  • [1] Discrete-Continuous Systems with Parameters: Method for Improving Control and Parameters
    Rasina, Irina, V
    Guseva, Irina S.
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2022, 39 : 34 - 50
  • [2] Observation control for discrete-continuous stochastic systems
    Miller, BM
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (05) : 993 - 998
  • [3] Discrete-continuous modeling using Hybrid Stochastic Petri Nets
    Horton, G
    Kowarschik, M
    SIMULATION IN INDUSTRY'99: 11TH EUROPEAN SIMULATION SYMPOSIUM 1999, 1999, : 687 - 694
  • [4] Minimax filtering in linear stochastic uncertain discrete-continuous systems
    G. B. Miller
    A. R. Pankov
    Automation and Remote Control, 2006, 67 : 413 - 427
  • [5] Minimax filtering in linear stochastic uncertain discrete-continuous systems
    Miller, GB
    Pankov, AR
    AUTOMATION AND REMOTE CONTROL, 2006, 67 (03) : 413 - 427
  • [6] CONDITIONALLY OPTIMAL DISCRETE FILTERING OF PROCESSES IN DISCRETE-CONTINUOUS STOCHASTIC-SYSTEMS
    PUGACHEV, VS
    SINITSYN, IN
    SHIN, VI
    DOKLADY AKADEMII NAUK SSSR, 1986, 289 (02): : 297 - 301
  • [7] Second Order Krotov Method for Discrete-Continuous Systems
    Rasina, I., V
    Danilenko, O., V
    BULLETIN OF IRKUTSK STATE UNIVERSITY-SERIES MATHEMATICS, 2020, 32 : 17 - 32
  • [8] Discrete-continuous variable structural optimization of systems under stochastic loading
    Jensen, Hector A.
    Beer, Michael
    STRUCTURAL SAFETY, 2010, 32 (05) : 293 - 304
  • [9] MODELING OF COMBINED DISCRETE-CONTINUOUS PROCESSES
    BARTON, PI
    PANTELIDES, CC
    AICHE JOURNAL, 1994, 40 (06) : 966 - 979
  • [10] SYNTHESIS OF SYSTEMS WITH DISCRETE-CONTINUOUS TIME
    PEROV, VP
    ENGINEERING CYBERNETICS, 1980, 18 (03): : 113 - 124