APPROXIMATION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS IN HILBERT SPACE

被引:6
作者
LAGNESE, J [1 ]
机构
[1] GEORGETOWN UNIV, DEPT MATH, WASHINGTON, DC 20007 USA
关键词
D O I
10.2969/jmsj/02510132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:132 / 143
页数:12
相关论文
共 50 条
[41]   A Hilbert Space Approach to Fractional Differential Equations [J].
Kai Diethelm ;
Konrad Kitzing ;
Rainer Picard ;
Stefan Siegmund ;
Sascha Trostorff ;
Marcus Waurick .
Journal of Dynamics and Differential Equations, 2022, 34 :481-504
[42]   APPROXIMATION OF SOLUTIONS OF EQUATIONS OF HAMMERSTEIN TYPE IN HILBERT SPACES [J].
Chidume, C. E. ;
Shehu, Y. .
FIXED POINT THEORY, 2015, 16 (01) :91-101
[43]   BOUNDEDNESS OF SOLUTIONS TO NONLINEAR EQUATIONS IN HILBERT SPACE [J].
KARTSATO.AG .
PROCEEDINGS OF THE JAPAN ACADEMY, 1969, 45 (05) :339-&
[44]   WEAK SOLUTIONS TO EQUATIONS OF EVOLUTION IN HILBERT SPACE [J].
BENILAN, P ;
BREZIS, H .
ANNALES DE L INSTITUT FOURIER, 1972, 22 (02) :311-&
[46]   APPROXIMATION BY SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS [J].
BROWDER, FE .
AMERICAN JOURNAL OF MATHEMATICS, 1962, 84 (01) :134-&
[47]   Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method [J].
Omar Abu Arqub ;
Mohammed AL-Smadi ;
Shaher Momani ;
Tasawar Hayat .
Soft Computing, 2016, 20 :3283-3302
[48]   Multiple solutions for impulsive semilinear functional and neutral functional differential equations in Hilbert space [J].
M Benchohra ;
J Henderson ;
SK Ntouyas ;
A Ouahab .
Journal of Inequalities and Applications, 2005
[49]   Stable approximation of solutions to irregular nonlinear operator equations in a Hilbert space under large noise [J].
Kokurin M.Yu. .
Computational Mathematics and Mathematical Physics, 2007, 47 (1) :1-8
[50]   Numerical solutions of special fuzzy partial differential equations in a reproducing kernel Hilbert space [J].
Ghaleb Gumah .
Computational and Applied Mathematics, 2022, 41