APPROXIMATION OF SOLUTIONS OF DIFFERENTIAL EQUATIONS IN HILBERT SPACE

被引:6
作者
LAGNESE, J [1 ]
机构
[1] GEORGETOWN UNIV, DEPT MATH, WASHINGTON, DC 20007 USA
关键词
D O I
10.2969/jmsj/02510132
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:132 / 143
页数:12
相关论文
共 50 条
[21]   SMOOTHNESS OF GENERALIZED SOLUTIONS FOR DIFFERENTIAL-EQUATIONS IN THE HILBERT-SPACE [J].
ORUDZHEV, GD .
DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1989, (07) :17-19
[22]   LOWER BOUNDS AND UNIQUENESS THEOREMS FOR SOLUTIONS OF DIFFERENTIAL EQUATIONS IN A HILBERT SPACE [J].
AGMON, S ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1967, 20 (01) :207-+
[23]   BESSEL FUNCTIONALS AND SOLUTIONS OF HYPERBOLIC DIFFERENTIAL EQUATIONS IN HILBERT-SPACE [J].
ABDELAZIZ, N .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (02) :A350-A350
[24]   POLYNOMIAL-APPROXIMATION OF SOLUTIONS OF EVOLUTIONARY PARABOLIC EQUATIONS IN A HILBERT-SPACE [J].
GORODETSKII, VV .
MATHEMATICAL NOTES, 1991, 49 (3-4) :245-248
[25]   STOCHASTIC DIFFERENTIAL EQUATIONS IN HILBERT SPACE [J].
CURTAIN, RF ;
FALB, PL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1971, 10 (03) :412-&
[26]   ANTIPERIODIC SOLUTIONS TO A CLASS OF NONLINEAR DIFFERENTIAL-EQUATIONS IN HILBERT-SPACE [J].
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (02) :387-408
[28]   GENERALIZED SOLUTIONS OF THE 1ST ORDER DIFFERENTIAL EQUATIONS IN HILBERT SPACE [J].
SOBOLEVSKY, PE .
DOKLADY AKADEMII NAUK SSSR, 1958, 122 (06) :994-996
[29]   ON SOLUTIONS TO STOCHASTIC DIFFERENTIAL-EQUATIONS WITH DISCONTINUOUS DRIFT IN HILBERT-SPACE [J].
LEHA, G ;
RITTER, G .
MATHEMATISCHE ANNALEN, 1985, 270 (01) :109-123