ANALYTICAL SOLUTION TO THE FOKKER-PLANCK EQUATION WITH A BOTTOMLESS ACTION

被引:2
作者
NAKAZATO, H
机构
[1] Department of Physics, University of the Ryukyus, Okinawa
关键词
D O I
10.1016/0370-2693(94)91013-8
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A new Langevin equation with a field-dependent kernel is proposed to deal with bottomless systems. The corresponding Fokker-Planck equation is shown to be a diffusion-type equation and is solved analytically at any finite fictitious time. The solution generally depends on the choice of initial distribution and has no equilibrium limit. An interesting connection to the ordinary Feynman measure, which in this case is not normalizable, is clarified.
引用
收藏
页码:98 / 103
页数:6
相关论文
共 10 条
[1]  
[Anonymous], 1989, FOKKERPLANCK EQUATIO
[2]   STOCHASTIC QUANTIZATION [J].
DAMGAARD, PH ;
HUFFEL, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 152 (5-6) :227-+
[3]  
Gardiner C.W., 1985, HDB STOCHASTIC METHO
[4]   STABILIZED QUANTUM-GRAVITY - STOCHASTIC INTERPRETATION AND NUMERICAL-SIMULATION [J].
GREENSITE, J .
NUCLEAR PHYSICS B, 1993, 390 (02) :439-460
[5]   STABILIZING BOTTOMLESS ACTION THEORIES [J].
GREENSITE, J ;
HALPERN, MB .
NUCLEAR PHYSICS B, 1984, 242 (01) :167-188
[6]   LANGEVIN SIMULATION OF A BOTTOMLESS HERMITIAN MATRIX MODEL FOR 2-DIMENSIONAL QUANTUM-GRAVITY [J].
KANENAGA, M ;
MIZUTANI, M ;
NAMIKI, M ;
OHBA, I ;
TANAKA, S .
PROGRESS OF THEORETICAL PHYSICS, 1994, 91 (03) :599-610
[7]  
NAIMIKI M, 1992, STOCHASTIC QUANTIZAT
[8]  
PARISI G, 1981, SCI SINICA, V24, P483
[9]   STABILIZATION OF PHI-3-MODEL BASED ON STOCHASTIC QUANTIZATION METHOD WITH KERNELED LANGEVIN EQUATION [J].
TANAKA, S ;
OHBA, I ;
NAMIKI, M ;
MIZUTANI, M ;
KOMOIKE, N ;
KANENAGA, M .
PROGRESS OF THEORETICAL PHYSICS, 1993, 89 (01) :187-196
[10]   STOCHASTIC QUANTIZATION OF BOTTOMLESS SYSTEMS BASED ON A KERNELED LANGEVIN EQUATION [J].
TANAKA, S ;
NAMIKI, M ;
OHBA, I ;
MIZUTANI, M ;
KOMOIKE, N ;
KANENAGA, M .
PHYSICS LETTERS B, 1992, 288 (1-2) :129-139