High-order finite element discretizations of the reduced wave equation have frequency bands where the solutions are harmonic decaying waves. In these so called ''stopping'' bands, the solutions are not purely propagating (real wavenumbers) but are attenuated (complex wavenumbers). In this paper we extend the standard dispersion analysis technique to include complex wavenumbers. We then use this complex Fourier analysis technique to examine the dispersion and attenuation characteristics of the p-version finite element method. Practical guidelines are reported for phase and amplitude accuracy in terms of the spectral order and the number of elements per wavelength.