Strong Maximum Principles for Implicit Parabolic Functional-Differential Problems Together with Nonstandard Inequalities with Integrals

被引:0
作者
Byszewski, L. [1 ]
机构
[1] Cracow Univ Technol, Inst Math, Warszawska 24, PL-31155 Krakow, Poland
来源
THAI JOURNAL OF MATHEMATICS | 2006年 / 4卷 / 01期
关键词
Strong maximum principles; implicit nonlinear systems; parabolic systems; functional-differential systems; nonstandard inequalities with integrals;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of the paper is to give strong maximum principles for implicit parabolic functional-differential problems together with nonstandard inequalities with integrals in relatively arbitrary (n + 1) - dimensional time-space sets more general than the cylindrical domain. The results obtained can be applied in the theory of diffusion and in the theory of heat conduction.
引用
收藏
页码:73 / 84
页数:12
相关论文
共 12 条
[1]  
BESALA P, 1971, B ACAD POL SCI SMAP, V19, P1003
[2]  
Brandys J., 2002, COMMENTATIONES MATH, V42, P17
[3]  
Byszewski L., 1990, J APPL MATH STOCHAST, V3, P65
[4]  
Byszewski L., 2004, STUD MATH, V23, P9
[5]  
Byszewski L., 1984, ACTA MATH, V24, P327
[6]  
Chabrowski J., 1984, FUNKC EKVACIOJ-SER I, V27, P101
[7]   MAXIMUM PRINCIPLE IN UNBOUNDED DOMAINS FOR PARABOLIC INEQUALITIES WITH FUNCTIONALS [J].
REDHEFFER, R ;
WALTER, W .
MATHEMATISCHE ANNALEN, 1977, 226 (02) :155-170
[8]  
Szarski J., 1980, B ACAD POL SCI SMAP, V28, P471
[9]  
Szarski J., 1967, DIFFERENTIAL INEQUAL
[10]  
Szarski J., 1974, ANN POL MATH, V49, P207