GEOMETRY OF P-ADIC SIEGEL DISKS

被引:47
作者
ARROWSMITH, DK
VIVALDI, F
机构
[1] School of Mathematical Sciences, Queen Mary and Westfield College, University of London, London, E1 4NS, Mile End Road
关键词
D O I
10.1016/0167-2789(94)90191-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We survey recent advances in the study of regular motions over p-adic fields, show its varied connections with dynamics and number theory, and illustrate its significance to an important class of discrete dynamical systems. We also show that mappings supporting quasi-periodic motions can be naturally interpreted as flows with p-adic time.
引用
收藏
页码:222 / 236
页数:15
相关论文
共 20 条
[1]  
Arrowsmith D. K., 1990, INTRO DYNAMICAL SYST
[2]   IDEAL ORBITS OF TORAL AUTOMORPHISMS [J].
BARTUCCELLI, M ;
VIVALDI, F .
PHYSICA D, 1989, 39 (2-3) :194-204
[3]  
BATRA A, 1992, ALGEBRAIC DYNAMICS P, V1
[4]  
BEARDON AF, 1991, ITERATION RATIONAL F
[5]  
BENMENAHEM S, 1988, TAUP162788 TEL AV U
[6]  
Hasse H., 1980, NUMBER THEORY
[7]  
KNUTH DE, 1981, ART COMPUTER PROGRAM
[8]  
Koblitz N., 1987, COURSE NUMBER THEORY
[9]   FORMAL COMPLEX MULTIPLICATION IN LOCAL FIELDS [J].
LUBIN, J ;
TATE, J .
ANNALS OF MATHEMATICS, 1965, 81 (02) :380-&
[10]   ONE-PARAMETER FORMAL LIE GROUPS OVER RHO-ADIC INTEGER RINGS [J].
LUBIN, J .
ANNALS OF MATHEMATICS, 1964, 80 (03) :464-&