Lefschetz (1, 1)-theorem in tropical geometry

被引:0
作者
Jell, Philipp [1 ]
Rau, Johannes [2 ]
Shaw, Kristin [3 ]
机构
[1] Georgia Inst Technol, 686 Cherry St, Atlanta, GA 30332 USA
[2] Univ Tubingen, Geschwister Scholl Pl, D-72074 Tubingen, Germany
[3] Univ Oslo, Dept Math, Box 1053, N-0316 Oslo, Norway
来源
EPIJOURNAL DE GEOMETRIE ALGEBRIQUE | 2018年 / 2卷
关键词
Tropical geometry; algebraic and topological cycles; matroids;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a tropical manifold of dimension n we show that the tropical homology classes of degree (n - 1, n - 1) which arise as fundamental classes of tropical cycles are precisely those in the kernel of the eigenwave map. To prove this we establish a tropical version of the Lefschetz (1,1)-theorem for rational polyhedral spaces that relates tropical line bundles to the kernel of the wave homomorphism on cohomology. Our result for tropical manifolds then follows by combining this with Poincare duality for integral tropical homology.
引用
收藏
页数:27
相关论文
共 21 条
  • [1] First steps in tropical intersection theory
    Allermann, Lars
    Rau, Johannes
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2010, 264 (03) : 633 - 670
  • [2] The Bergman complex of a matroid and phylogenetic trees
    Ardila, F
    Klivans, CJ
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) : 38 - 49
  • [3] Cartwright D., 2013, PREPRINT
  • [4] Cartwright D., 2015, PREPRINT
  • [5] Chambert-Loir A., 2012, PREPRINT
  • [6] The diagonal of tropical matroid varieties and cycle intersections
    Francois, Georges
    Rau, Johannes
    [J]. COLLECTANEA MATHEMATICA, 2013, 64 (02) : 185 - 210
  • [7] Gubler W, 2016, NONARCHIMEDEAN TROPI, V589, P1
  • [8] Itenberg I., 2016, PREPRINT
  • [9] Jell P., ADV GEOM
  • [10] Super currents and tropical geometry
    Lagerberg, Aron
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2012, 270 (3-4) : 1011 - 1050