STABLE SETS VERSUS INDEPENDENT SETS

被引:5
作者
DING, GL [1 ]
机构
[1] RUTGERS UNIV,RUTCOR,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1016/0012-365X(93)90325-N
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G = (V, E) be a graph and let J(G) be the set of stable sets of G. The matroidal number of G, denoted by m(G), is the smallest integer m such that J(G) = J1 or J2 or ... or J(m) for some matroids M(i) = (V, J(i))(i = 1, 2, ..., m). We characterize the graphs of matroidal number at most m for all m greater-than-or-equal-to 1. For m less-than-or-equal-to 3, we show that the graphs of matroidal number at most m can be characterized by excluding finitely many induced subgraphs. We also consider a similar problem which replaces 'union' by 'intersection'.
引用
收藏
页码:73 / 87
页数:15
相关论文
共 8 条
[1]   BOOLEAN TECHNIQUES FOR MATROIDAL DECOMPOSITION OF INDEPENDENCE SYSTEMS AND APPLICATIONS TO GRAPHS [J].
BENZAKEN, C ;
HAMMER, PL .
DISCRETE MATHEMATICS, 1985, 56 (01) :7-34
[2]  
CRAMA Y, 1987, THESIS RUTGERS U NEW
[3]  
Edmonds J., 1971, MATH PROGRAM, V1, P127, DOI [10.1007/BF01584082, DOI 10.1007/BF01584082]
[4]  
Garey M.R., 1979, COMPUTERS INTRACTABI, V174
[5]  
HARARY F, 1974, REV SOC MAT CHILE, V1, P19
[6]  
Higman G., 1952, P LOND MATH SOC, V3, P326, DOI 10.1112/plms/s3-2.1.326
[7]   THE NP-COMPLETENESS OF EDGE-COLORING [J].
HOLYER, I .
SIAM JOURNAL ON COMPUTING, 1981, 10 (04) :718-720
[8]  
Welsh D.J.A., 1976, MATROID THEORY