Galois representations with open image

被引:30
作者
Greenberg, Ralph [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
来源
ANNALES MATHEMATIQUES DU QUEBEC | 2016年 / 40卷 / 01期
基金
美国国家科学基金会;
关键词
Galois representations; Iwasawa theory; pro- p groups;
D O I
10.1007/s40316-015-0050-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an approach to constructing Galois extensions of Q with Galois group isomorphic to an open subgroup of GL(n)(Z(p)) for various values of n and primes p. The approach involves studying a certain topological generating set for a Sylow pro-p subgroup of SLn(Z(p)). It also involves finding algebraic number fields which admit a Galois extension with Galois group isomorphic to a free pro-p on n generators.
引用
收藏
页码:83 / 119
页数:37
相关论文
共 25 条
[11]  
James G., 1981, ENCY MATH ITS APPL, V16
[12]  
James G., 2001, REPRESENTATIONS CHAR
[13]  
Jaulent J. F., 1987, SEMINAIRE THEORIE NO, P10
[14]   POLYNOMIALS WITH GALOIS GROUP PSL(2,7) [J].
LAMACCHIA, SE .
COMMUNICATIONS IN ALGEBRA, 1980, 8 (10) :983-992
[15]  
Minardi J. V., 1986, THESIS
[16]  
MOVAHHEDI A, 1990, MATH NACHR, V149, P163
[17]  
Movahhedi A., 1990, PROGR MATH, V81, P155, DOI DOI 10.1007/978-1-4612-3460-9_9
[18]  
NEUKIRCH J, 2000, GRUNDLEHREN MATH WIS, V323
[19]   ZP TORSION OF CERTAIN GALOIS MODULES [J].
NGUYENQUANGDO, T .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (02) :27-46
[20]  
Serre J.P., 1989, MATH SCI RES I PUBL, P385