GENERALIZED CROSS-VALIDATION AS A METHOD FOR CHOOSING A GOOD RIDGE PARAMETER

被引:2842
作者
GOLUB, GH
HEATH, M
WAHBA, G
机构
[1] OAK RIDGE NATL LAB, DIV COMP SCI, OAK RIDGE, TN 37830 USA
[2] UNIV WISCONSIN, DEPT STAT, MADISON, WI 53706 USA
关键词
Cross-validation; Ridge parameter; Ridge regression;
D O I
10.1080/00401706.1979.10489751
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider the ridge estimate β(λ) for β in the model unknown, (λ) =(XTX + nλI)−1XTy. We study the method of generalized cross-validation(GCV)for choosing a good value for λ from the data. The estimate is the minimizer of V(λ) given by where A(λ)= X(XTX + nλI)−1XTThis estimate is a rotation-invariant version of Allen's PRESS, or ordinary cross-validation. This estimate behaves like a risk improvement estimator, but does not require an estimate of σ2so can be used when n − p is small, or even if p ≥ 2 n in certain cases. The GCV method can also be used in subset selection and singular value truncation methods for regression, and even to choose from among mixtures of these methods. © 1979 Taylor & Francis Group, LLC.
引用
收藏
页码:215 / 223
页数:9
相关论文
共 43 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   RELATIONSHIP BETWEEN VARIABLE SELECTION AND DATA AUGMENTATION AND A METHOD FOR PREDICTION [J].
ALLEN, DM .
TECHNOMETRICS, 1974, 16 (01) :125-127
[3]   MEAN SQUARE ERROR OF PREDICTION AS A CRITERION FOR SELECTING VARIABLES [J].
ALLEN, DM .
TECHNOMETRICS, 1971, 13 (03) :469-&
[4]   NUMERICAL DIFFERENTIATION PROCEDURES FOR NON EXACT DATA [J].
ANDERSSEN, RS ;
BLOOMFIELD, P .
NUMERISCHE MATHEMATIK, 1974, 22 (03) :157-182
[5]  
ANDERSSEN RS, 1974, TECHNOMETRICS, V16, P69
[6]  
[Anonymous], 1976, 28 STANF U DIV BIOST
[7]   NUMERICAL-SOLUTION OF FREDHOLM INTEGRAL-EQUATIONS OF FIRST KIND [J].
BAKER, CTH ;
WRIGHT, K ;
FOX, L ;
MAYERS, DF .
COMPUTER JOURNAL, 1964, 7 (02) :141-&
[8]  
Bellman R., 1960, INTRO MATRIX ANAL, DOI 10.1137/1.9781611971170.fm
[9]   MINIMAX ESTIMATION OF A MULTIVARIATE NORMAL MEAN UNDER ARBITRARY QUADRATIC LOSS [J].
BERGER, J .
JOURNAL OF MULTIVARIATE ANALYSIS, 1976, 6 (02) :256-264
[10]   SMOOTHING NOISY DATA WITH SPLINE FUNCTIONS [J].
WAHBA, G .
NUMERISCHE MATHEMATIK, 1975, 24 (05) :383-393