Review of Recent Advances in Carbon Nanotube Biosensors Based on Field-Effect Transistors

被引:13
作者
Hou, Guangfeng [1 ]
Zhang, Lu [1 ]
Ng, Vianessa [1 ]
Wu, Zhizhen [2 ]
Schulz, Mark [1 ]
机构
[1] Univ Cincinnati, Dept Mech & Mat Engn, Cincinnati, OH 45221 USA
[2] Univ Cincinnati, Dept Elect & Comp Engn, Cincinnati, OH 45221 USA
关键词
Biosensor; carbon nanotube; field-effect transistor; bioreceptor;
D O I
10.1142/S179398441642006X
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The extraordinary physiochemical properties of carbon nanotubes (CNTs) stimulated their wide application in biosensing research. Nanotube characteristics of fast electron transport, large surface area, high strength, excellent catalytic activity and good chemical stability contribute to ultrasensitive, highly selective and stable CNT biosensors. Among the various CNT biosensors, the field-effect transistor (FET) architecture has received tremendous attention due to the advantages of high performance, miniaturization, and capability for mass production. In this paper, we address recent advances in the development of CNT biosensors based on FETs. The synthesis and properties of CNTs are discussed, along with their integration into biosensors. Recent progress in device fabrication, including CNT functionalization, attachment, and bioreceptor immobilization in CNT-based FET biosensors are highlighted. Examples in medical, food and environmental fields are illustrated.
引用
收藏
页数:16
相关论文
共 128 条
[51]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[52]  
Jain U., 2016, ADV MAT LETT, V7, P472, DOI [10.5185/amlett.2016.5985, DOI 10.5185/AMLETT.2016.5985]
[53]   Real-time selective monitoring of allergenic Aspergillus molds using pentameric antibody-immobilized single-walled carbon nanotube-field effect transistors [J].
Jin, Joon-Hyung ;
Kim, Junhyup ;
Jeon, Taejin ;
Shin, Su-Kyoung ;
Sohn, Jong-Ryeul ;
Yi, Hana ;
Lee, Byung Yang .
RSC ADVANCES, 2015, 5 (20) :15728-15735
[54]   Strategies for enhancing the analytical performance of nanomaterial-based sensors [J].
Justino, Celine I. L. ;
Rocha-Santos, Teresa A. P. ;
Cardoso, Susana ;
Duarte, Armando C. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2013, 47 :27-36
[55]   Carbon Nanowall Field Effect Transistors Using a Self-Aligned Growth Process [J].
Kawahara, Toshio ;
Yamaguchi, Satarou ;
Ohno, Yasuhide ;
Maehashi, Kenzo ;
Matsumoto, Kazuhiko ;
Okamoto, Kazumasa ;
Utsunomiya, Risa ;
Matsuba, Teruaki .
E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2014, 12 :225-229
[56]   Variations of interlayer spacing in carbon nanotubes [J].
Kharissova, Oxana V. ;
Kharisov, Boris I. .
RSC ADVANCES, 2014, 4 (58) :30807-30815
[57]   Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors [J].
Khung, Yit Lung ;
Narducci, Dario .
BIOSENSORS & BIOELECTRONICS, 2013, 50 :278-293
[58]   Fully Automated Field-Deployable Bioaerosol Monitoring System Using Carbon Nanotube-Based Biosensors [J].
Kim, Junhyup ;
Jin, Joon-Hyung ;
Kim, Hyun Soo ;
Song, Wonbin ;
Shin, Su-Kyoung ;
Yi, Hana ;
Jang, Dae-Ho ;
Shin, Sehyun ;
Lee, Byung Yang .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (10) :5163-5171
[59]   Carbon nanotubes for electronic and electrochemical detection of biomolecules [J].
Kim, Sang Nyon ;
Rusling, James F. ;
Papadimitrakopoulos, Fotios .
ADVANCED MATERIALS, 2007, 19 (20) :3214-3228
[60]   Chemical vapor deposition of methane for single-walled carbon nanotubes [J].
Kong, J ;
Cassell, AM ;
Dai, HJ .
CHEMICAL PHYSICS LETTERS, 1998, 292 (4-6) :567-574