MOUNTAIN PASS THEOREMS AND GLOBAL HOMEOMORPHISM THEOREMS

被引:107
作者
KATRIEL, G
机构
[1] Department of Mathematics, University of Haifa, Haifa
来源
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE | 1994年 / 11卷 / 02期
关键词
MOUNTAIN-PASS THEOREMS; GLOBAL HOMEOMORPHISM THEOREMS;
D O I
10.1016/S0294-1449(16)30191-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that mountain-pass theorems can be used to derive global homeomorphism theorems. Two new mountain-pass theorems are proved, generalizing the ''smooth'' mountain-pass theorem, one applying in locally compact topological spaces, using Hofer's concept of mountain-pass point, and another applying in complete metric spaces, using a generalized notion of critical point similar to the one introduced by Ioffe and Schwartzman. These are used to prove global homeomorphism theorems for certain topological and metric spaces, generalizing known global homeomorphism theorems for mappings between Banach spaces.
引用
收藏
页码:189 / 209
页数:21
相关论文
共 13 条
[1]   REMARKS ON FINDING CRITICAL-POINTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (8-9) :939-963
[2]   COVERING SPACES, FIBRE SPACES, AND LOCAL HOMEOMORPHISMS [J].
BROWDER, FE .
DUKE MATHEMATICAL JOURNAL, 1954, 21 (02) :329-336
[3]  
CHRISTENSON CO, 1977, ASPECTS TOPOLOGY
[4]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[5]  
HOFER H, 1985, J LOND MATH SOC, V31, P566
[7]  
IOFFE AD, MORSE REGULARITY STA
[8]  
Mawhin J., 1989, APPL MATH SCI, V74
[9]  
SCHECHTER M, 1991, J LOND MATH SOC, V44, P491
[10]  
Schwartz J.T., 1969, NONLINEAR FUNCTIONAL