TRIPLE POSITIVE SOLUTIONS FOR SYSTEM OF NONLINEAR SECOND-ORDER THREE POINT BOUNDARY VALUE PROBLEM

被引:0
作者
Naceri, Mostepha [1 ]
Elhaffaf, Amir [2 ]
机构
[1] Preparatory Sch Oran, Econ Commercial & Management Sci, Oran, Algeria
[2] Oran Univ, Fac Sci, Dept Math, Es Senia, Algeria
来源
ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES | 2013年 / 11卷 / 02期
关键词
nonlinear second-order differential systems; positive solutions; Legget-Williams fixed point theorems; boundary condition;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we apply the Legget-Williams fixed point theorems to obtain sufficient condition for the existence of at least three positive solutions of boundary value problems for systems of second-order ordinary differential equations of the form {-u(n)(t) + k(2)u(t) = f(t, u(t), v(t)), 0 < t < 1, -v(n)(t) + omega(2)v(t) = f(t, u(t), v(t)), 0 < t < 1, u(0) = v(0) = 0, u(1) = beta u(eta), v(1) = lambda v(n), where f : (0, 1) x [0, +infinity) x [0, +infinity) -> [0, +infinity); g : [0, 1] x [0, +infinity) x [0, +infinity) -> [0, +infinity) and k, omega are positive constants, 0 < eta < 1, 0 < ss < ss(0), 0 < lambda < lambda(0.)
引用
收藏
页码:119 / 134
页数:16
相关论文
共 18 条
[1]   POSITIVE SOLUTIONS FOR A SYSTEM OF SINGULAR SECOND ORDER NONLOCAL BOUNDARY VALUE PROBLEMS [J].
Asif, Naseer Ahmad ;
Eloe, Paul W. ;
Khan, Rahmat Ali .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2010, 47 (05) :985-1000
[2]   NONLOCAL SYSTEMS OF BVPS WITH ASYMPTOTICALLY SUBLINEAR BOUNDARY CONDITIONS [J].
Goodrich, Christopher S. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2012, 6 (02) :174-193
[3]  
Guo YX, 2009, ELECTRON J QUAL THEO, P1
[4]   SOLVABILITY OF AN M-POINT BOUNDARY-VALUE PROBLEM FOR 2ND-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
GUPTA, CP ;
NTOUYAS, SK ;
TSAMATOS, PC .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 189 (02) :575-584
[5]  
Gupta G. P., 1996, J MATH ANAL APPL, V168, P540
[6]   Multiple positive solutions of boundary value problems for systems of nonlinear second-order differential equations [J].
Hu, Ling ;
Wang, Lianglong .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) :1052-1060
[7]  
Juan Du, 2009, APPL MATH SCI, V3, P1141
[8]  
Kameswararao A, 2010, MATH COMMUN, V15, P129
[9]   Three positive solutions of singular nonlocal boundary value problems for systems of nonlinear second-order ordinary differential equations [J].
Kang, Ping ;
Wei, Zhongli .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (01) :444-451
[10]  
Lan Sun, 2011, INT SCHOLARLY RES NE, V2011, P1